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Synopsis

As for Poincaré’s centre-problem Poincaré [3] himself assumed that if the origin is a centre then there is
an integral (constant of motion) being analytic in a neighborhood of the origin. We are going to prove
this assumption and vice versa in a concise way by using techniques developed by C. L. Siegel [6].

1 Introduction

Consider a system of differential equations of the form

ẋ = y + q(x, y)

ẏ = −x− p(x, y)



 (1.1)

where p, q are real convergent power series whose terms of lowest order are of degree at least two. We want
to present a new short proof that the origin is a centre of (1.1) if and only if there is an integral (constant
of motion) being real analytic and non-constant in a neighborhood of the origin. According to [4, p. 6]
Ljapunov [1] was the first to give a complete proof of this result; then however in [4] special attention
is called to the proof in [2] which seems to be available only with great difficulties. It may be therefore
worthwhile to present a proof which is easily accessible. Our method is based on Siegel’s considerations
on Poincaré’s centre-problem in [6, §25].

2 Complex Systems

(1.1) is considered for complex valued x, y also whereas t remains real.

Definition 2.1: Let us consider the complex (real) system

ẋ = Q(x, y)

ẏ = P (x, y)



 (2.1)

where Q, P are convergent power series in the two complex variables x, y, whereas the curve parameter t
is real. Let

Q(0, 0) = P (0, 0) = 0.

The equilibrium (0, 0) is called stable if for every sufficiently small polycylinder (square in R2) Uε(0, 0) =
{(x, y)||x| < ε, |y| < ε}, ε > 0, there is a polycylinder (square in R2) Bδ(0, 0) = {|x| < δ, |y| < δ}, δ > 0,
such that the solution (x(t, 0, ξ), y(t, 0, η)) of (2.1) with initial values (ξ, η) for t = 0 exists for all times
and satisfies

(x(t, 0, ξ), y(t, 0, η)) ∈ Uε(0, 0)

provided

(ξ, η) ∈ Bδ(0, 0).
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The notion of stability we are going to use here thus means stability in the past and in the future. Insta-
bility is the logical negation of stability whereas in [6, p. 157] a stronger notion is used. Thus instability
in the sense of [6, p. 157] implies instability in our sense. The linear part in (1.1) has eigenvalues i and
−i. The eigenvectors are 1√

2
(1, i), 1√

2
(1,−i). Introducing new variables (x̃, ỹ) in (1.1) by the substitution

(
x̃

ỹ

)
=

(
1√
2

1√
2

1√
2
i

− 1√
2
i

) (
x

y

)
(2.2)

we arrive at the equivalent system

x̃ = ix̃ + f(x̃, ỹ),

ỹ = −iỹ + g(x̃, ỹ).



 (2.3)

f, g are convergent power series starting with quadratic terms and we have

f(x̃, ỹ) = g(ỹ, x̃)

g originates from g by replacing the coefficients of g by their complex conjugates ([6, p. 175]).

For a moment we use formal power series and apply a particular substitution which brings (2.2) into
its normal form. There exist power series ϕ(u, v), ψ(u, v) in the new variables u, v of the form

x̃ = ϕ(u, v) = u + ϕ2 + ϕ3 + . . . ,

ỹ = ψ(u, v) = v + ψ2 + ψ3 + . . .

with the homogeneous parts ϕi, ψi of degree i such that (2.3) becomes

u̇ = pu, v̇ = qv. (2.4)

p, q are power series in w = u · v. ϕ,ψ do not contain terms of the form uwk, vwk with k ≥ 1. ϕ,ψ are
determined uniquely by these requirements (cf [6, pp.175, 176]). Moreover

ϕ(u, v) = ψ(v, u) (2.5)

As for the stability of the origin we have
Theorem 2.1: The origin is a stable point of equilibrium of (2.3) if and only if

p + q = 0. (2.6)

In this case the series for ϕ,ψ, p and q are convergent in a neighborhood of the origin.

Proof: [6, pp. 177, 178]. ¤

Stability can also be characterized by the existence of a holomorphic constant of motion.

Theorem 2.2: The origin is a stable point of equilibrium of (2.3) if and only if there is a constant
of motion F̃ which is holomorphic in a neighborhood of the origin and whose power series around the
origin contains the term x̃ · ỹ.
Proof: Let the origin be stable. (2.6) implies that u · v is a constant of motion for (2.4). Inverting the
biholomorphic mapping

x̃ = ϕ(u, v)

ỹ = ψ(u, v)



 = Φ(u, v)

we immediately see that with
(u

v

)
= Φ−1

(
x̃
ỹ

)
,

u = x̃ + u2(x̃, ỹ) + u3(x̃, ỹ) + . . . ,

v = ỹ + v2(x̃, ỹ) + v3(x̃, ỹ) + . . .

the function
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F̃ (x̃, ỹ) = u(x̃, ỹ) · v(x̃, ỹ),

= x̃ · ỹ + higher order terms

is a constant of motion for (2.3). As for the opposite direction we refer to [7, p. 197]. ¤

3 The Real System

We now apply Theorem 2.2 and in particular the proof of Theorem 2.1 in [6, p. 175] to the real system
(1.1).

Theorem 3.1: The origin is a stable point of equilibrium of the real system (1.1) if and only if it
is a stable point of equilibrium of the complex system (2.3).

Proof: Let the origin be unstable for (2.3). Then it is so for the real system (1.1) as proved in [6,
pp. 177, 178]. In this reference there is a misprint on p. 177, 4th line from below: On has to replace (7)
by (1). See also [5, pp. 23 - 30] for a more detailed version. If the origin is unstable for the real system
(1.1) then it is so for (2.3) since (2.3) originates from (1.1) by an invertible linear transformation. ¤

Definition 3.2: The origin is called a centre for the real system 1.1 if there is a neighborhood of the
origin such that every integral of (1.1) passing through a point of that neighborhood is closed.

Observe that in a suitable neighborhood of the origin there is no point of equilibrium distinct from
the origin.

Theorem 3.3: The real system (1.1) has a centre in the origin if and only if it has an integral

F (x, y) = F2(x, y) + F3(x, y) + . . . ,
Fi homogeneous polynomials in xy of degree i

which is analytic in a neighborhood of the origin and starts with F2(x, y) = 1
2 (x2 + y2).

Proof: Let (1.1) have a centre in the origin. Transforming (1.1) by using polar coordinates ϕ, r in
R2 we obtain a single equation

dr

dϕ
= r′ = r

g1(ϕ)r + . . .

1 + h1(ϕ)r + . . .
(3.1)

without singularity. Numerator and denominator are convergent power series in r with 2π-periodic coef-
ficients g1, g2, . . . , h1, h2, . . .. The gi, hi are in fact polynomials in cos ϕ, sin ϕ. Since all solutions of (3.1)
with

r0 = r(0), 0 ≤ r0 < ε,

are 2π-periodic it is easy to see that the origin is stable. According to Theorem 3.1 this is so for (2.3) and

F̃ (x̃, ỹ) = x̃ỹ + higher order terms

is a constant of motion being holomorphic in |x̃| < ε, |ỹ| < ε. Inserting

x̃ = 1√
2
(x + iy)

ỹ = 1√
2
(x− iy)

we obtain

x̃ỹ =
1
2
(x2 + y2).

If

F̃ (x̃, ỹ) = x̃ỹ +
∑

ν+µ≥3

F̃νµx̃ν ỹµ

then with suitable coefficients Fνµ we obtain
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F̃ (
1√
2
(x + iy),

1√
2
(x− iy)) =

1
2
(x2 + y2) +

∑

ν+µ≥3

Fνµxνyµ,

and

F (x, y) =
1
2
(x2 + y2) +

∑

ν+µ≥3

(ReFνµ)xνyµ (3.2)

is the desired real analytic constant of motion of (1.1). If conversely the convergent power series (3.2) is
a constant of motion of (1.1) then the origin is a strict minimum of F and therefore a centre for (1.1). ¤
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