Analytic Integrals and Poincaré's Centre Problem

Wolf von Wahl Department of Mathematics University of Bayreuth D-95440 Bayreuth wolf.vonwahl@uni-bayreuth.de

Synopsis

As for Poincaré's centre-problem Poincaré [3] himself assumed that if the origin is a centre then there is an integral (constant of motion) being analytic in a neighborhood of the origin. We are going to prove this assumption and vice versa in a concise way by using techniques developed by C. L. Siegel [6].

1 Introduction

Consider a system of differential equations of the form

$$\begin{aligned} \dot{x} &= y + q(x, y) \\ \dot{y} &= -x - p(x, y) \end{aligned}$$

$$(1.1)$$

where p, q are real convergent power series whose terms of lowest order are of degree at least two. We want to present a new short proof that the origin is a centre of (1.1) if and only if there is an integral (constant of motion) being real analytic and non-constant in a neighborhood of the origin. According to [4, p. 6] Ljapunov [1] was the first to give a complete proof of this result; then however in [4] special attention is called to the proof in [2] which seems to be available only with great difficulties. It may be therefore worthwhile to present a proof which is easily accessible. Our method is based on Siegel's considerations on Poincaré's centre-problem in [6, §25].

2 Complex Systems

(1.1) is considered for complex valued x, y also whereas t remains real.

Definition 2.1: Let us consider the complex (real) system

$$\begin{array}{l} \dot{x} &=& Q(x,y) \\ \dot{y} &=& P(x,y) \end{array} \right\}$$

$$(2.1)$$

where Q, P are convergent power series in the two complex variables x, y, whereas the curve parameter t is real. Let

$$Q(0,0) = P(0,0) = 0.$$

The equilibrium (0,0) is called stable if for every sufficiently small polycylinder (square in \mathbb{R}^2) $U_{\varepsilon}(0,0) = \{(x,y)||x| < \varepsilon, |y| < \varepsilon\}, \varepsilon > 0$, there is a polycylinder (square in \mathbb{R}^2) $B_{\delta}(0,0) = \{|x| < \delta, |y| < \delta\}, \delta > 0$, such that the solution $(x(t,0,\xi), y(t,0,\eta))$ of (2.1) with initial values (ξ,η) for t = 0 exists for all times and satisfies

$$(x(t,0,\xi), y(t,0,\eta)) \in U_{\varepsilon}(0,0)$$

provided

$$(\xi,\eta) \in B_{\delta}(0,0).$$

The notion of stability we are going to use here thus means stability in the past and in the future. Instability is the logical negation of stability whereas in [6, p. 157] a stronger notion is used. Thus instability in the sense of [6, p. 157] implies instability in our sense. The linear part in (1.1) has eigenvalues i and -i. The eigenvectors are $\frac{1}{\sqrt{2}}(1,i), \frac{1}{\sqrt{2}}(1,-i)$. Introducing new variables (\tilde{x}, \tilde{y}) in (1.1) by the substitution

$$\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}i \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
(2.2)

we arrive at the equivalent system

$$\begin{aligned} \widetilde{x} &= i\widetilde{x} + f(\widetilde{x}, \widetilde{y}), \\ \widetilde{y} &= -i\widetilde{y} + g(\widetilde{x}, \widetilde{y}). \end{aligned}$$

$$(2.3)$$

f,g are convergent power series starting with quadratic terms and we have

$$f(\widetilde{x},\widetilde{y}) = \overline{g}(\widetilde{y},\widetilde{x})$$

 \overline{g} originates from g by replacing the coefficients of g by their complex conjugates ([6, p. 175]).

For a moment we use formal power series and apply a particular substitution which brings (2.2) into its normal form. There exist power series $\varphi(u, v), \psi(u, v)$ in the new variables u, v of the form

> $\widetilde{x} = \varphi(u, v) = u + \varphi_2 + \varphi_3 + \dots,$ $\widetilde{y} = \psi(u, v) = v + \psi_2 + \psi_3 + \dots$

with the homogeneous parts φ_i, ψ_i of degree *i* such that (2.3) becomes

$$\dot{u} = pu, \ \dot{v} = qv. \tag{2.4}$$

p, q are power series in $w = u \cdot v$. φ, ψ do not contain terms of the form uw^k , vw^k with $k \ge 1$. φ, ψ are determined uniquely by these requirements (cf [6, pp.175, 176]). Moreover

$$\varphi(u,v) = \psi(v,u) \tag{2.5}$$

As for the stability of the origin we have

Theorem 2.1: The origin is a stable point of equilibrium of (2.3) if and only if

$$p + q = 0. \tag{2.6}$$

In this case the series for φ, ψ, p and q are convergent in a neighborhood of the origin.

Proof: [6, pp. 177, 178].

Stability can also be characterized by the existence of a holomorphic constant of motion.

Theorem 2.2: The origin is a stable point of equilibrium of (2.3) if and only if there is a constant of motion \tilde{F} which is holomorphic in a neighborhood of the origin and whose power series around the origin contains the term $\tilde{x} \cdot \tilde{y}$.

Proof: Let the origin be stable. (2.6) implies that $u \cdot v$ is a constant of motion for (2.4). Inverting the biholomorphic mapping

$$\left. \begin{array}{ll} \widetilde{x} & = & \varphi(u,v) \\ \\ \widetilde{y} & = & \psi(u,v) \end{array} \right\} = \Phi(u,v) \ \ \, \\ \end{array}$$

we immediately see that with

$$\begin{pmatrix} u \\ v \end{pmatrix} = \Phi^{-1} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix},$$

$$u = \tilde{x} + u_2(\tilde{x}, \tilde{y}) + u_3(\tilde{x}, \tilde{y}) + \dots,$$

$$v = \tilde{y} + v_2(\tilde{x}, \tilde{y}) + v_3(\tilde{x}, \tilde{y}) + \dots$$

the function

$$\begin{split} \widetilde{F}(\widetilde{x},\widetilde{y}) &= u(\widetilde{x},\widetilde{y}) \cdot v(\widetilde{x},\widetilde{y}), \\ &= \widetilde{x} \cdot \widetilde{y} + \text{ higher order terms} \end{split}$$

is a constant of motion for (2.3). As for the opposite direction we refer to [7, p. 197].

3 The Real System

We now apply Theorem 2.2 and in particular the proof of Theorem 2.1 in [6, p. 175] to the real system (1.1).

Theorem 3.1: The origin is a stable point of equilibrium of the real system (1.1) if and only if it is a stable point of equilibrium of the complex system (2.3).

Proof: Let the origin be unstable for (2.3). Then it is so for the real system (1.1) as proved in [6, pp. 177, 178]. In this reference there is a misprint on p. 177, 4th line from below: On has to replace (7) by (1). See also [5, pp. 23 - 30] for a more detailed version. If the origin is unstable for the real system (1.1) then it is so for (2.3) since (2.3) originates from (1.1) by an invertible linear transformation.

Definition 3.2: The origin is called a centre for the real system 1.1 if there is a neighborhood of the origin such that every integral of (1.1) passing through a point of that neighborhood is closed.

Observe that in a suitable neighborhood of the origin there is no point of equilibrium distinct from the origin.

Theorem 3.3: The real system (1.1) has a centre in the origin if and only if it has an integral

$$F(x,y) = F_2(x,y) + F_3(x,y) + \dots,$$

$$F_i \text{ homogeneous polynomials in } x_y \text{ of degree } i$$

which is analytic in a neighborhood of the origin and starts with $F_2(x,y) = \frac{1}{2}(x^2 + y^2)$.

Proof: Let (1.1) have a centre in the origin. Transforming (1.1) by using polar coordinates φ, r in \mathbb{R}^2 we obtain a single equation

$$\frac{dr}{d\varphi} = r' = r \frac{g_1(\varphi)r + \dots}{1 + h_1(\varphi)r + \dots}$$
(3.1)

without singularity. Numerator and denominator are convergent power series in r with 2π -periodic coefficients $g_1, g_2, \ldots, h_1, h_2, \ldots$ The g_i, h_i are in fact polynomials in $\cos \varphi, \sin \varphi$. Since all solutions of (3.1) with

$$r_0 = r(0), \ 0 \le r_0 < \varepsilon,$$

are 2π -periodic it is easy to see that the origin is stable. According to Theorem 3.1 this is so for (2.3) and

$$\widetilde{F}(\widetilde{x},\widetilde{y}) = \widetilde{x}\widetilde{y} + \text{ higher order terms}$$

is a constant of motion being holomorphic in $|\widetilde{x}| < \varepsilon$, $|\widetilde{y}| < \varepsilon$. Inserting

$$\widetilde{x} = \frac{1}{\sqrt{2}}(x + iy)$$
$$\widetilde{y} = \frac{1}{\sqrt{2}}(x - iy)$$

we obtain

$$\widetilde{x}\widetilde{y} = \frac{1}{2}(x^2 + y^2).$$

 \mathbf{If}

$$\widetilde{F}(\widetilde{x},\widetilde{y}) = \widetilde{x}\widetilde{y} + \sum_{\nu+\mu\geq 3} \widetilde{F}_{\nu\mu}\widetilde{x}^{\nu}\widetilde{y}^{\mu}$$

then with suitable coefficients $F_{\nu\mu}$ we obtain

$$\widetilde{F}(\frac{1}{\sqrt{2}}(x+iy), \frac{1}{\sqrt{2}}(x-iy)) = \frac{1}{2}(x^2+y^2) + \sum_{\nu+\mu\geq 3} F_{\nu\mu}x^{\nu}y^{\mu},$$

and

$$F(x,y) = \frac{1}{2}(x^2 + y^2) + \sum_{\nu+\mu \ge 3} (\mathcal{R}eF_{\nu\mu})x^{\nu}y^{\mu}$$
(3.2)

is the desired real analytic constant of motion of (1.1). If conversely the convergent power series (3.2) is a constant of motion of (1.1) then the origin is a strict minimum of F and therefore a centre for (1.1). \Box

References

- M. A. Ljapunov, Problème général de la stabilité du mouvement, Princeton University Press (1947), 1-474.
- [2] A. Maier, Complements of chapter XI in the book: O Krivix opredeliaemix differentsialnimi uravnemiami (On curves defined by differential equations). OGIZ Goztehizdad Moskva-Leningrad (1947). In Russian.
- [3] H. Poincaré, Sur ser courbes définies par les équations différentielles, J. Math. Pures et Appliquées 1 (1885), 167-244.
- [4] D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of Plane Quadratic Vector Fields, Expo. Math. 8 (1990), 3 - 25.
- [5] B. Siebe, Das Poincarésche Zentrumsproblem. Anwendung ebener autonomer nicht-degenerierter Systeme. Diploma thesis, Universität Bayreuth, Germany, 2004. Available online at: www.uni-bayreuth.de/departments/math/org/mathe6/publ/da/siebe/siebe.pdf
- [6] C. L. Siegel, Vorlesungen über Himmelsmechanik, Springer Verlag (1956).
- [7] C. L. Siegel, Gesammelte Abhandlungen, vol. IV. Springer Verlag (1979)