Remarks on Lines of Reversibility for Poincaré's Centre Problem

Wolf von Wahl
Department of Mathematics
University of Bayreuth
D-95440 Bayreuth
wolf.vonwahl@uni-bayreuth.de

Synopsis

We characterize lines of reversibility for the centre-problem by using their slope as parameter. As a result of our method we formulate in a rather concise way the conditions for reversibility for cubic systems with nonvanishing quadratic terms.

1 Introduction

Consider a system of differential equations of the form

$$
\left.\begin{array}{rl}
\dot{x} & =y+q(x, y) \tag{1.1}\\
\dot{y} & =-x-p(x, y)
\end{array}\right\}
$$

where p, q are polynomials whose terms of lowest order are of degree at least two. A well-known sufficient condition, due to Poincaré, for the origin to be a centre is that the system be reversible with respect to a line L, which passes through the origin, i.e. that the system be invariant under a reflection in the line L, and under a simultaneous reversal of the independent variable t. Thus system (1.1) is reversible with respect to the line $x=0$ if and only if it is invariant under the transformation $(x, y, t) \rightarrow(-x, y,-t)$, i.e. if and only if $q(-x, y)=q(x, y)$ and $p(-x, y)=-p(x, y)$. Thus q contains only even powers of x and p only odd ones. Reversibility with respect to $y=0$ is thus equivalent to $q(x,-y)=-q(x, y), p(x,-y)=p(x, y)$, i.e. q contains only odd powers of y and p only even ones. As for a general line L one can apply a rotation which transforms L into the line $x=0$ or $y=0$ and a criterion for reversibility may then readily be attained [1]. Collins, by using tensor-calculus, derives in [2] a necessary and sufficient condition for the existence of such a line without involving its unknown equation.

Here we discuss another method which neither uses purely orthogonal transformations nor tensor calculus. By a suitable change of variables we reduce the problem of finding a line of reversibility $y=-\frac{1}{m} x$ with $m \in \mathbb{R}-\{0\}$ to the question whether the system is reversible to $y=0$. This access therefore leaves out the coordinate-axes as possible lines of reversibility. As mentioned above it is however easy to decide if one of the coordinate axes is a line of reversibility. If we write

$$
\left.\begin{array}{rl}
p & =p_{2}+p_{3}+\ldots+p_{N} \tag{1.2}\\
q & =q_{2}+q_{3}+\ldots+q_{N}
\end{array}\right\}
$$

with homogeneous polynomials p_{1}, q_{i} of degree i it turns out that possible lines of reversibility are already determined by the quadratic case $\dot{x}=y+q_{2}, \dot{y}=-x-p_{2}$ provided $\left(p_{2}, q_{2}\right) \neq(0,0)$. The values of m found there have to be inserted into polynomial equations corresponding to $p_{2}, q_{2}, \ldots, p_{N}, q_{N}$. These equations then provide the necessary and sufficient conditions for (1.1) to have a line of reversibility. The coefficients of the polynomial equations linearly depend on the coefficients of $p_{3}, q_{3}, \ldots, p_{N}, q_{N}$ respectively. We use this method to discuss the case

$$
\left.\begin{array}{rl}
p=p_{2}+p_{3} \tag{1.3}\\
q & =q_{2}+q_{3}
\end{array} \quad \text { for }\left(p_{2}, q_{2}\right) \neq(0,0)\right\}
$$

and to bring the conditions for the existence of a line of reversibility into a manageable form.

2 Reversibility in Polynomial Systems

In what follows we frequently use instead of (1.1) the single equation

$$
\begin{equation*}
y^{\prime}=-\frac{x+p(x, y)}{y+q(x, y)} \tag{2.1}
\end{equation*}
$$

as done in [3] or [4]. For $m \neq 0$ we employ the linear transformation of variables.

$$
\begin{align*}
\xi & =y-m x \\
\eta & =y+\frac{1}{m} x \tag{2.2}
\end{align*}
$$

or

$$
\begin{align*}
& x=\frac{m}{m^{2}+1}(\eta-\xi)=\varphi(\xi, \eta) \\
& y=\frac{m^{2}}{m^{2}+1} \eta+\frac{1}{m^{2}+1} \xi=\psi(\xi, \eta) . \tag{2.3}
\end{align*}
$$

We set $\Phi(\xi, \eta)=(\varphi(\xi, \eta), \psi(\xi, \eta))^{T}$ with.T for transposition. Φ^{-1} consists of a rotation and a stretching of the x, y-coordinates. So does Φ but in opposite order. Thus reversibility with respect to a line is a property which is invariant under Φ^{-1} and Φ. Then (2.1) becomes

$$
\begin{equation*}
\eta^{\prime}=-\frac{\xi+(q-m p) \circ \Phi}{m^{2} \eta+m(m q+p) \circ \Phi} \tag{2.4}
\end{equation*}
$$

Now we arrive at

Theorem 2.1: (2.1) has a centre at (0,0) with line of reversibility $y=-\frac{1}{m} x(m \neq 0)$ if and only if each

$$
\left.\begin{array}{l}
\left(q_{i}-m p_{i}\right) \circ \Phi \text { contains only even powers of } \eta \text { and each } \tag{2.5}\\
\left(m q_{i}+p_{i}\right) \circ \Phi \text { contains only odd powers of } \eta, 2 \leq i \leq N .
\end{array}\right\}
$$

Proof:
If (2.4) satisfies (2.5), then (2.4) has a centre at $(0,0)$ with line of reversibility $\eta=0$. Thus (2.1) has a centre at $(0,0)$ with line of reversibility $y=-\frac{1}{m} x$. If conversely (2.1) has a centre at $(0,0)$ with line of reversibility $y=-\frac{1}{m} x$, then (2.4) has so with line of reversibility $\eta=0$. Consequently (2.5) is satisfied.
(2.5) can be transformed into a more explicit form.

Theorem 2.2: (2.5) is equivalent to $N-1$ matrix equations

$$
\mathcal{L}_{i+1}\left(p_{i}, q_{i}\right)\left(\begin{array}{c}
m \tag{2.6}\\
m^{2} \\
\vdots \\
m^{i+1}
\end{array}\right)=\left(\begin{array}{c}
b_{1}\left(p_{i}, q_{i}\right) \\
b_{2}\left(p_{i}, q_{i}\right) \\
\vdots \\
b_{i+1}\left(p_{i}, q_{i}\right)
\end{array}\right), 2 \leq i \leq N
$$

where $\mathcal{L}_{i+1}\left(p_{i}, q_{i}\right),\left(b_{1}\left(p_{i}, q_{i}\right), \ldots, b_{m+1}\left(p_{i}, q_{i}\right)\right)^{T}$ are $(i+1) \times(i+1),(i+1) \times 1$ matrices respectively whose coefficients linearly depend on the coefficients of p_{i}, q_{i}.

Proof:
We have to evaluate $\left(q_{i}-m p_{i}\right) \circ \Phi,\left(m q_{i}+p_{i}\right) \circ \Phi$. These expressions are of the form

$$
\begin{aligned}
& \frac{1}{\left(m^{2}+1\right)^{i}} \sum_{k, l, k+l=i}\left(q_{i k l}-m p_{i k l}\right) \sum_{j=0}^{k}\binom{k}{j} m^{k} \eta^{k-j}(-\xi)^{j} \cdot \sum_{q=0}^{l}\binom{l}{q} m^{2(l-q)} \eta^{l-q} \xi^{q}= \\
& =\frac{m^{i}}{\left(m^{2}+1\right)^{i}} \sum_{\lambda=0}^{i} \eta^{i-\lambda} \sum_{k, l, k+l=i}\left(q_{i k l}-m p_{i k l}\right) m^{l} \cdot \sum_{\substack{j, q, j+q=\lambda \\
j \leq m i n \\
q \leq \min (l, \lambda, \lambda)}} m^{-2 q}(-\xi)^{j} \xi^{q}\binom{k}{j}\binom{l}{q}
\end{aligned}
$$

if we set $\lambda=j+q$ and if $p_{i k l}, q_{i k l}$ denote the coefficients of p_{i}, q_{i} respectively. If $i-\lambda$ is odd, the coefficient of $\eta^{i-\lambda}$ has to vanish. If i is odd the values

$$
\lambda=i-1, i-3, \ldots, 0
$$

furnish the powers in question. For $\lambda=0$ the largest occurring power of m is $2 i+1$, the smallest one i. For $\lambda=2$ we obtain $2 i-1$ as largest one and $i-2$ as smallest one and so on. Dividing by m^{i}, m^{i-2}, \ldots and multiplying by $\left(m^{2}+1\right)^{i}$ we end up with $(i+1) / 2$ polynomials in m of degree $i+1$ which have to vanish. If i is even the values

$$
\lambda=i-1, i-3, \ldots, 1
$$

furnish the powers in question. For $\lambda=1$ the largest occurring power of m is $2 i$, the smallest one is $i-1$. Observe that these values are assumed for $l=i-1, q=0$ and $l=1, q=1$. For $\lambda=3$ we obtain $2 i-2$ as largest one and $i-3$ as smallest one and so on. Dividing by m^{i-1}, m^{i-3}, \ldots and multiplying by $\left(m^{2}+1\right)^{i}$ we arrive at $i / 2$ polynomials in m of degree $i+1$ which have to vanish. As for $\left(m q_{i}+p_{i}\right) \circ \Phi$ the coefficients of even powers of η have to vanish. The calculations are very similar to the preceding ones. If i is odd we again obtain $(i+1) / 2$ polynomials in m of degree $i+1$ which have to vanish; if i is even we arrive at $i / 2+1$ polynomials in m which have to vanish.

The systems (2.6) have to be considered as necessary and sufficient conditions on the coefficients of p_{i}, q_{i} for the existence of a line of reversibility different from the coordinate-axes. This can be seen as follows. If $\left(p_{j}, q_{j}\right)$ is the first pair where p_{j}, q_{j} do not vanish identically we can find the possible values of m from (2.6) for $i=j$ in terms of the coefficients of p_{j}, q_{j}. These then have to be inserted into (2.6) for $i=j, \ldots, N$. For instance let us assume that in

$$
\mathcal{L}_{j+1}\left(p_{j}, q_{j}\right)=\left(l_{i k}\right)_{i, k=1, \ldots, j+1}
$$

the matrix

$$
\left(l_{i k}\right)_{i, k=2, \ldots, j+1} \text { has rank } j
$$

then we can possibly obtain the value of m from the first row of $(2.6, i=j)$. At least this is so if $\mathcal{L}_{j+1}\left(p_{j}, q_{j}\right)$ has rank $j+1$. This value of m if $\neq 0$ then has to be inserted into the remaining equations in (2.6). It is an expression in the coefficients of p_{j}, q_{j}. Thus we obtain the necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate-axes. In the example to follow in the next section we will see that in more detail.

3 Cubic Systems with Nonvanishing Quadratic Parts

Let us consider

$$
y^{\prime}=-\frac{x+p_{2}+p_{3}}{y+q_{2}+q_{3}}
$$

with

$$
\begin{aligned}
& p_{2}=\widehat{a} x^{2}+(2 \widehat{b}+\alpha) x y+\widehat{c} y^{2} \\
& q_{2}=\widehat{b} x^{2}+(2 \widehat{c}+\beta) x y+\widehat{d} y^{2} \\
& p_{3}=a x^{3}+b x^{2} y+c x y^{2}+d y^{3} \\
& q_{3}=A x^{3}+B x^{2} y+C x y^{2}+D y^{3}
\end{aligned}
$$

Here we adopted the usual notation for the quadratic parts p_{2}, q_{2} (cf. [3, 4, 5]). The conditions (2.6, $i=2,3)$ read as follows.

$$
\begin{gather*}
m^{3}(2 \widehat{b}+\alpha)+m^{2}(-(4 \widehat{c}+\beta)+2 \widehat{a})+m(-(4 \widehat{b}+\alpha)+2 \widehat{d})=-(2 \widehat{c}+\beta) \tag{3.1}\\
m^{3} \widehat{b}+m^{2}(-(2 \widehat{c}+\beta)+\widehat{a})+m(-(2 \widehat{b}+\alpha)+\widehat{d})=-\widehat{c} \tag{3.2}\\
m^{3} \widehat{d}+m^{2}((2 \widehat{c}+\beta)+\widehat{c})+m((2 \widehat{b}+\alpha)+\widehat{\beta})=-\widehat{a} \tag{3.3}\\
-m^{4} d+m^{3}(D-c)+m^{2}(C-b)+m(B-a)=-A \tag{3.4}
\end{gather*}
$$

$$
\begin{align*}
& -m^{4} b+m^{3}(B-(3 a-2 c))+m^{2}(3 A-2 C-(3 d-2 b))+m(3 D-2 B-c)=-C, \tag{3.5}\\
& -m^{4} C+m^{3}(3 D-2 B-c)+m^{2}(2 C-3 A-(2 b-3 d))+m(B-(3 a-2 c))=-b, \tag{3.6}\\
& -m^{4} A+m^{3}(B-a)+m^{2}(-C+b)+m(D-c)=-d \tag{3.7}
\end{align*}
$$

(3.1, 3.2, 3.3) stem from $i=2$, (3.4, 3.5, 3.6, 3.7) from $i=3$. We start with $i=2$. Then (3.1, 3.2, 3.3) are equivalent to

$$
\begin{gather*}
m^{3} \alpha+m^{2} \beta+m \alpha+\beta=0 \tag{3.8}\\
m^{3}(\widehat{b}+\widehat{d})+m^{2}(\widehat{a}+\widehat{c})+m(\widehat{b}+\widehat{d})+\widehat{a}+\widehat{c}=0 \tag{3.9}\\
m^{3} \widehat{d}+m^{2}((2 \widehat{c}+\beta)+\widehat{c})+m((2 \widehat{b}+\alpha)+\widehat{\beta})+\widehat{a}=0 \tag{3.10}
\end{gather*}
$$

For further treatment we introduce the vector

$$
\mathfrak{a}=(\widehat{a}+\widehat{c}, \widehat{b}+\widehat{d}, \alpha, \beta) \in \mathbb{R}^{4}
$$

If \mathfrak{a} has only nonvanishing components $(3.8,3.9)$ admit within $\mathbb{R}-\{0\}$ only the solutions $-\frac{\beta}{\alpha},-\frac{\widehat{a}+\widehat{c}}{\widehat{b}+\widehat{d}}$ respectively. Thus we obtain as necessary and sufficient conditions for the solvability of $(3.1,3.2,3.3)$ the relations

$$
\begin{gather*}
\beta(\widehat{b}+\widehat{d})=\alpha(\widehat{a}+\widehat{c}) \tag{3.11}\\
-\beta^{3} \widehat{d}+\alpha \beta^{2}(3 \widehat{c}+\beta)-\alpha^{2} \beta(3 \widehat{b}+\alpha)+\alpha^{3} \widehat{a}=0 \tag{3.12}
\end{gather*}
$$

(3.11, 3.12) coincide with condition II in [5, p. 13].

Inserting $m=-\frac{\beta}{\alpha}$ into $(3.4, \ldots, 3.7)$ we obtain together with $(3.11,3.12)$ the necessary and sufficient conditions for the existence of a line of reversibility, different from the coordinate-axes.

We briefly discuss the other possibilities for \mathfrak{a}. If $\mathfrak{a} \neq 0$ there are only two cases where we may have a line of reversibility different from the coordinate-axes, namely

$$
\begin{array}{ll}
\widehat{a}+\widehat{c} \neq 0, & \widehat{b}+\widehat{d} \neq 0, \quad \alpha=0, \quad \beta=0 \\
\widehat{a}+\widehat{c}=0, \quad \widehat{b}+\widehat{d}=0, \quad \alpha \neq 0, \quad \beta \neq 0
\end{array}
$$

then $m=-\frac{\widehat{a}+\widehat{c}}{\hat{b}+\widehat{d}}$ in the first case and then necessary and sufficient conditions for the existence of a line of reversibility as above are

$$
\begin{aligned}
& -(\widehat{a}+\widehat{c})^{3} \widehat{d}+3(\widehat{b}+\widehat{d})(\widehat{a}+\widehat{c})^{2} \widehat{c}-3(\widehat{b}+\widehat{d})^{2}(\widehat{a}+\widehat{c}) \widehat{b}+(\widehat{b}+\widehat{d})^{3} \widehat{a}=0 \\
& (3.4, \ldots, 3.7) \text { with } m=-\frac{\widehat{a}+\widehat{c}}{\widehat{b}+\widehat{d}}
\end{aligned}
$$

In the second case we have $m=-\frac{\beta}{\alpha}$ and an analogous result. It remains to deal with $\mathfrak{a}=0$. In this case we are left with

$$
m^{3} \widehat{d}+3 m^{2} \widehat{c}-3 m \widehat{d}-\widehat{c}=0
$$

If $\widehat{d} \neq 0$ we obtain three distinct real solutions m_{1}, m_{2}, m_{3} since the discriminant is <0. If $\widehat{c} \neq 0$ these solutions do not vanish and $y=-\frac{1}{m_{i}} x$ is a line of reversibility if and only if $(3.4, \ldots, 3.7)$ are satisfied with $m=m_{i}$. Since m_{1}, m_{2}, m_{3} can be computed by means of Cardano's formula we arrive thus at the necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate axes. If $\widehat{d} \neq 0, \widehat{c}=0$ one of m_{i} vanishes, say m_{3}. For $m_{1}=\sqrt{3}, m_{2}=-\sqrt{3}$ the conclusion before holds. The case $\widehat{d}=0, \widehat{c} \neq 0$ furnishes two roots, namely $m_{1}=\frac{1}{\sqrt{3}}, m_{2}=-\frac{1}{\sqrt{3}}$ and we can proceed as before. The case $\widehat{d}=\widehat{c}=0$ implies $\left(p_{2}, q_{2}\right)=(0,0)$ since $\mathfrak{a}=0$. It therefore contradicts our assumption.

References

[1] T. R. Blows and N. G. Lloyd, The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 215-239.
[2] C. B. Collins, Poincare's Reversibility Condition, J. Math. Analysis and Applications 259 (2001), 168-187.
[3] M. Frommer, Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen, Math. Ann. 109 (1934), 395 424.
[4] N. A. Sacharnikoff, On Frommer's Conditions for the Existence of a Centre, Prikl. Mat. Mech. Adad. Nauk SSR 12 (1948), 669-670.
[5] D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of Plane Quadratic Vector Fields, Expo. Math. 8 (1990), 3-25.

