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I. Unbounded Operators in Hilbert

Spaces. General Theory

§ 1. Closed Operators

Definition I.1.1: Let T be a linear operator in a Hilbert space

H with domain of definition D(T). T is called closed if and only

if the following implication is valid: Let {fn} be a sequence in
H with

fn-+f, n=1,2,c¢.,
fn eD(T),

Tfn-»g, n=1,2,c.. =«
Then £ €D (T) and g =TE.

Of course every bounded operator T with D(T) =H is closed. If
T is a linear operator in H with domain of definition D(T) and
if T €L(H,H), we set

D (T+T)

i

D(T),

(T+T)u = Tu +Tu, u €D(T).

If %:=cI, c €C, we often write cu instead of Tu =cIu and (T+c)u
instead of (T+cI)u.

Definition I.1.2: Let T1 be a linear operator in a Hilbert space

H with domain of definition D(T1). Let T2 be a second linear

operator. in H with domain of definition D(Tz). Let

D(T,) <0(T,),




T1x =T2x, X €U(T1).

Then T2 is called a continuation of T1.

We now pose the question, under which conditions on T1 it is

1° If T2 is such
a closed continuation, then the following implication holds: Let

possible to construct a closed continuation of T

fn-ao, n=1,2,..., T1fn-»g, then g =T1O==O. In other words:

anH-+O, fn ED(TT), HT1(fn—fm)H-+O, n,m->« implies HT1an-+O.

Definition I.1.3: A linear operator T with domain of definition

D(T) is called closeable if and only if the following implica-

tion holds: If for a sequence {fn} with fn €D (T) the {Tfn} are

a Cauchy sequence and if fn-+0, n=1,2,..., then Tfn-»o.

Theorem I.1.1: Let T1 be a linear operator with domain of defi-

nition D(T1). Then T, has a closed continuation T,
if T, is closeable. If T, is closeable then there is a smallest

closed continuation T1. This means that T1 has the following

if and only

properties:

1. T1 is a continuation of T1.

2. Any closed continuation T, of T,

is a continuation of T1.

T1 is called the closure of T,.

Proof: From what was said before Definition I.1.3 it is evident
that our condition is necessary. Now we assume that T1 is close-
able. We set




D(T1) = {f|f €H, there exists a sequence {f ) with
fn ED(T1), fn'+f, n=1,2,..., and
HT1(fn-fm)N-*O, n,m -},

It is clear that D(T1) is a linear subspace of H. We set

T1f = lim T,]fn,

n~-»co

fev("f1).

If {fé} is another sequence contained in D(T1) with fﬁ-»f,

n=1,2,..., and HT1(f£—f$)H-+O, n,m -, set h_ =fn-f£7 then

hn-eo, n +o, and HT1(hn—hm)H-»O, n,m >, Since T, is closeable

1
we obtain T hn-+0. The proof that T, is linear may be omitted.

1
is closed. Let {fn} be a sequence

1

It must be shown now that T1

contained in D(T1) with fn-af, T.f -g, then we can choose for

1T™n
each £ a f' €D(T,) with £ -f'll él and T, £ -T, £l él. There-
n n 1 n n n 1T7"n "1™ n n

fore f! »f, T ,f! »g, n-w, and consequently f €0(T,), g = T f =

1
s 1

lim ﬁﬁn. If T2

n—-oo

D(Tz) DD(T1) and T1f:=T2f, £ ED(T1). o

is any closed continuation of T1 then necessarily

As the following example shows there are Hilbert spaces H

and operators T in H which are not closeable: Set H = L2((-1,+1)),
o(T) = c®([-1,+11),
(Tf) (X) = f(o)r fED(T)I XE[_1I+1]-

One easily constructs a sequence {fn} contained in D(T) with

NE_I

-» 0, n-oow,

2
TLo((=1,+1))
1 = fn(O) = (Tfn)(x), x €[-1,+1].
1 1
Take e.qg. fn(x) =0, -1 =x §-5, fn(x) = nx+1, -5 <£x <0, £ (x) =
-nx+1, O £x gl, f (x) =0, 1 £x £1. Since
n n n




lTe = V2,
N2 ((=1,+1))

the operator T is not closeable.

Definition I.1.4: A linear subspace D of a Hilbert space H is

called dense in H if for each f € H there is a sequence {gn}

contained in D such that

gn -f, n->00
We can now define the notion of the adjoint of an operator T.
Definition I.1.5: Let T be a linear operator in a Hilbert space

H with domain of definition D(T). Let D(T) be dense in H. D(T*)
is the set of all g €H such that there exists a g* €H with

(I.1.1) (Tf,9) = (£,9*%), £ €D(T).

To complete our definition we need

Theorem I.1.2: g* in (I.1.1) is determined uniquely. If we set

g¥*=: T*g, g €D (T*)

then T* is a linear closed operator in H with domain of defini-
tion D (T*).

Proof: From the density of D(T) it follows that g* is determined
uniquely. The linearity of T* does not need a proof. Now let

9, 29 T*gn-*h, n -, with 9, €U(T*), n=1,2,... . Then




(Tf,gn) = (fIT*gn) ’
(Tflg) = (flh)l £ ED(T)-
The proof is completed. o

We give some examples. The first one concerns ordinary diffe-

rential operators. Let H = L2((a,b)), let
D(T) = C)((a,b))

for some N € IN, and let pk €Ck((a,b)), 1 £k £N. Then we set

N
TE(x) = I p (x)f
k=0

(k) %y, £en(m).

D(T) is dense in H since already C:((a,b)) is dense in L2((a,b)),

and we have for f£,g €D(T)

b N
(P£,9) = 7 £x) = (-DFE 9 ® ) ax,
a k=0

= (£,T*g).

Thus D(T*) oD (T) and

)(k)

N K —
T*g = X (=1)7(pp-9 , g ED(T).

The second example stems from the field of partial differential
operators. Let Q@ be a bounded open set of H{n, let H = LZ(Q).
Let m €EIN. For each multiindex o of IR let there be given func-
tions A, EC[a{(Q). We set

TE(x) = T A (x)DE(x), £ € D(T) = cZ™(a).

|a|<2m ©

Then Cgm(ﬂ) is dense in H, since already C:(Q) is dense in H.

The Theorem of GauB furnishes




(Tf,qg) = [ £(x) z (—1)[dlDa(Kag)(x) dx, g €0(T).
Q | o] <2m

Thus D (T*) o0(T),

T*g = X (—1)|a[°Da(Kag),
| a|<2m

g €0(T).

‘The next theorem gives a criterion for the existence of a

closed continuation of a given linear operator.

Theorem I.1.3: Let T be a linear operator in H with domain of
definition DP(T). Let D(T) and D(T*) be dense. Then T is closeable

and

T* = Tk,

Proof: First we prove that T is closeable. Let {fn} be a sequence
in D(T) with fn-eo, Tfn‘eg, n=1,2,... . Let h €D(T*). Then

(g,h) = lim (Tf_,h)
n-oo n
= lim (f£f_,T*h) = O.
) n

Since D (T*) is dense in H, we get g =0. Thus T is closeable. Now

we prove the second assertion: Let g €D (T*). Then
(Tf,g) = (£,T*g), £ €D(T).
In particular, we get for f €D(T)

(Tf,g) = (£f,T*g),




g € D(T*),
T*g = T*g,
D(T*) < D(T*).
As for the opposite direction let g €D(T*). Then

(Tflg) = (fIT*g)l £ ED(T)-

If £ €D(T), there is a sequence {fn} with £ €ED(T), £ ~£
Tfn-eff, n=1,2,... . Consequently, if fn is inserted instead

of £, the preceding equality furnishes
(Tf,9) = (f,T*g).

Thus g €D (T*),
D(T*) 2 D(T*),

T*g = T*g.

The theorem is proved.




§ 2. The Graph of a

Linear Operator

The set HxH = {{f,g}| £ €H, g €H} can be made a Hilbert space
by the following definitions:

(I.2.1) a{f,g} +8{h,k}:= {af+Bh, oag+Bk}, o,B €C,

(I.2.2) ({f,g},{h,k}):= (£,h) + (g,k),
1€, gH == (£l 2+nqn?) /2,

By (I.2.1) HxH becomes a vector space over € with {0,0} as the

element zero. By (I.2.2) the structure of a Hilbert space is

imposed on HxH: It is easily shown that HxH is complete with

the norm just defined.

Definition I.2.1: Let T be a linear operator in H with domain
of definition D(T). The set

G(T) = {{f,Tf}| £ €D(T)}

is a linear subspace of HxH and called the graph of T.

If T1,T2 are linear operators in H with domains of definition

D(T1), D(Tz), and if T2 is a continuation T1 (cf. Definition

I.1.2), then this is evidently equivalent with
G(T1) EG(Tz)-

We also write in this case

(I.2.3) T, T

1 2°




Proposition I.2.1: T is closed if and only if G(T) is closed.

Proof: Let G(T) be closed. Let {fn,Tfn} -{f,g}, n=1,2,..., in
HxH. Then {f,g}l €G(T), fn-+f, Tfn-eg, n=1,2,... . Thus £ €0(T),
'g=Tf, and T is closed. If T is closed and if {fn,Tfn}-+{f,g},
n=1,2,..., then £ €0(T), g=Tf. Our proposition is proved. o

Now we introduce an operator U €L (HxH,HxH). U is defined byl
U:{f,g} » {-g,f}.
Then evidently

U2 = -1I.

Proposition I.2.2: Let T be a closed operator in H with dense

domain of definition D(T). Then

(I.2.4) G(T)T = u(G(T*)),

(I.2.5) (UG(T))T = G(T*).

Proof: 1. Let {o@,¥} EG(T)l. Then ({f,Tf},{¢,v}) = O for all
f €0(T). Thus
(f,9) + (T£,¥) = O,

(Tfrlp) = (fl—(p)l f GD(T).

Consequently ¢ €D(T*), T*y =-¢ and {o,¥} €U(G(T*)). If {-T*y,y}
€ U(G(T*)), then

(fI—T*q)) + (Tf,q)) = 0,
f €D(T). Thus
{-T*y,v} € 6(T)*.

Thus (I.2.4) is proved.




10

2. Let {-Tf,f} €UG(T). Then we take an element {¢,¥} with

({-7£,£},{o,¥}) = O, thus

-(Tf,9) + (£,¢¥) = O.

If £ runs through all of D(T), then {-Tf,f} runs through all of
UG(T), and if {@,¥} is in UG(T)T we get: @ €D(T*), ¥ =T*g,
{w,v} €G(T*). For the second direction we have to go thTOV‘j}' our tela-

tions from backward. QOur proposition is proved. o

Proposition I1.2.3: Let T be a linear operator in H with domain
of definition D(T). Let T be closeable. Then

G(T) = G(T).

Proof: The proof may be left to the reader. o

Now we want to characterize closed operators in terms of

their adjoints.

Theorem I.2.1: Let T be a closed linear operator in H with dense

domain of definition P(T). Then D(T*) is also dense in H, and

moreover

(I.2.6) T** = T,

Proof: We first show that D (T*) is dense in H. If D(T*) is not

dense in H, then there is an h €H# such that

h # O,
(g,h) = 0, g €D(T*).




1

Thus ({-T*g,g},{0,h}) = O for all g €D(T*) and {O,h} € (UG(T*))L.
According to Proposition I.2.2 we have

{o,h} € (((rHhHt = 6(m,

{0,h} ={£f,Tf}

for some f €D (T), and consequently f =0, Tf =h =0. Therefore

D(T*) is dense, and we can construct T**_, Since G (T*¥) =(UG(T*))l

= G(T) by Proposition I.2.2 we arrive at T** =T, and our Theorem

is -proved.

Remark: If T€T,, () dense i R, then TFc T

Theorem I.2.2: Let T be a closeable operator in H with dense

domain of definition D(T). Then D(T*) is dense in H and

T** = T,

Proof: From the preceding theorem it follows that T*has dense

domain of definition D (T* and that T** =T. From Theorem I.1.3
we get with T¥¢ T* that J(TX) is dense and that (T*)% = T%% g
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§ 3. Hermitian Operators

We start with

Definition I.3.1: A linear operator H in a Hilbert space H with

domain of definition D(H) is called hermitian if and only if

1. D(H) is dense in ¥,
2. (Hfrg) = (leg)r f.,g €D (H).

Shortly spoken, an operator H is hermitian if H* oH. We give
an example: Let H =L2(Q), where Q is a bounded open set of ﬂzn,
let D(H) =C:(Q). et m € IN. Let there be given functions AuB €
c™(Q) for all multiindices o,8 of IR" with |a[,|8| <m. Moreover
we assume that

(I.3.1) A, = (-1y Lol +lBlg—,

B Ba
We set
Hu = PN Da(AaBDBu),
| o <m,
| 8] <m

u €D (H). By GauB's Theorem we get

me,g) = g, = 0PI ETg),

| o] <m,

|8 <m

provided f,g ec:(g). Thus (Hf,g) = (f,Hg), f,9 €D(H) by (I.3.1).

Definition I.3.2: Let A be a linear operator in H with dense

domain of definitiond(A). A is called selfadjoint if and only if
A¥ =pA




13

Proposition I.3.71: Let A be a linear operator in H with dense

domain of definition D(A). Then A is selfadjoint if and only if

1. A is hermitian.

2. If (Au,v) =(u,v*) for all u €D(A) and some v,v* €H,

then v €D (A) and v* =Av. - Every selfadjoint operator

is hermitian and closed.

Since the proof of this proposition is trivial, we omit it.

Now we give an example for a selfadjoint operator. Let H =1

2’
i.e. the space of all sequences x==(x1,x2,...) of complex num-
bers with | % [2 <+ and scalar product (x,y) = £ X y.. We
k - k?k
k=1 k=1
set D(a) = {x|x€l,, = k2[x [2 <+wo} and
2 k
k=1
Ax = (x1,2x1,3x3,...), X €D(A).
Evidently, A is hermitian. Now let (Ax,y) =(x,y*) for all x €D(a)
and some y, y* Elz. Then we have
0 oo
ry kx vy, = £ x y*
k=1 k*k k=1 k*k

if y=(Y1rY21--~)r y* =(y¥f,y;,~--)- We Set: X(“)

whose components are O with the exception of the F—th one, which

is the sequence

is 1. Then we get: uyu =y:, w=1,2,..., and consequently y €0D(a),
v* =Ay.

Theorem I.3.1: Let H be a hermitian operator in H with domain of

definition H. Then H is selfadjoint.

Proof: It follows that H* =H.
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Definition I.3.3: Let H be a hermitian operator in H with domain

of definition D(H). H is called essentially selfadjoint if and

only if its closure H is selfadjoint.

In order to explain this definition we first remark that with
H also its closure H is hermitian. Namely, let f,g €D(H), fn-ef,

9,29 Do, with fn’gn €DP(H), and an~+ﬁf, Hgn-+ﬁg, then

(an,gn) =(fn,Hgn) and consequently (Hf,qg) = (f,Hg). Our defini-
tiqn is equivalent with each of the following statements:

(I.3.2) H* = H,

==

(I.3.3) H* =

14

(I.3.4) H* = H**,

(I.3.2) is clear, Theorem I.41.3 furnishes the telatien

H* =H*, and from (I.3.2) we get H* =H. From (I.3.3) we get ¥hen
with Theorem I.2.2 the relation (I.3.4). From (I.3.4) it follows
with H* =H* and H** =H that (I.3.2) holds.

Next we want to characterize the selfadjointness of a hermi-
tian operator H in terms of the subspaces (H+i) (H), (H-1i) (H).

For a linear operator T in H with domain of definition D(T) we

set
(I.3.5) R(T) = T(H) = {Tflf €ED(T) }.

Evidently R(T) is a linear subspace of H, it's called the range
of T.

Theorem I.3.2: Let H be a hermitian operator in H with domain

of definition D(H). Then H is selfadjoint if and only if

R(H+i) = H and R(H-i) = H.
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Let us remark that in general we write T+A for the operator
T+AI being defined on D(T); A is any complex number.

Proof: Let us first assume that H is selfadjoint. For f €0 (H)

we have
H(Hii)f”z = (Hf+if,Hf%if)
2 2 . .
= |gfll© +I €ll° £ (if,Hf) % (Hf,if),
2 2 . -,
= |[HEN© +I1 £11© £ i (f,HE) +1i(HE,f),
= lluel? +1 £ 2.
Thus |l (Hzi) fll 2l £fll. Thus we can define the inverse (Hti)—1 of

(Hti) on R(Hti). We have H(Hii)—1H £1. Now we show that R (Hzi)
are closed subspaces of H. Let g €R(Hti), g, 2>9r N, with
I, €R(Hxi). Then gn=(H:ti)fn with uniquely determined fn €D (H).

Since

Hgn-gmH = H(Hil)(fn—fm)ﬂ 2 an—me
we obtain that fn-ef, n -, Thus an-eg tif, n »ew; since H is
closed we arrive at £ €D(H), Hf =g+if, (Hti)g =g, g €R(H%i).
Consequently, R(H%zi) is closed. If R(H+i) ##, then there exists

a g €H with

((H+i) £, qg)

I

o, £ €D(H),

Il gll 1.

Therefore (Hf,g) = (f,ig), g €D (H), Hg =ig, since we have assumed
H to be selfadjoint. Since O =| (H-i)gll 2llgll we arrive at g =0
which is a contradiction. The case R(H-i) #H is treated analogous-
ly. Thus we have proved that R(Hti) =H. As for the second direc-

tion we assume that R(H+i) =H. Now let
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(Hf,qg) = (f,9*), £ €D(H).
Thus

((H+i)f,g) = (f:g*‘ig), £ ED(H)I

and there is an h €D (H) with g*-ig = (H-i)h; it follows that

((H+i)frg) = (f,(H_i)h),
((H+i)£f,h), £ €D(H).

Since R(H+i) =H we get g=h €D(H). Thus H is selfadjoint. Our

theorem is proved.

Proposition I.3.2: Let H be a hermitian operator in H with do-
main of definition D(H). Then R(H:i) = R(H%i).

Proof: Let g €R(H+i), g = lim (H+i)f . Since an—me <
-0
H(H+i)(fn—fm)H, the sequence {fn} is convergent; we set f =

lim fn. Then {an} is also convergent; we set
N—-»co

v .
g = 1lim an

n—oo

and obtain Hf »g-if=§,n »w, £ €D(H), Hf =g-if, (H+i)f =g. Thus
g €R(H+i). Analogously we can prove that R(H-i) cR(H-i). As for
the second part of the proof let g €R(H+i). Then g =Hf+if with
a unique f €D(H) (observe that H is also hermitian). Thus there
is a sequence {f } with £ €D(H), n=1,2,..., £ =€, HE -~ Hf,
n -»eo. Thus (H+i)fn-+(H+i)f =g, n -, and R(H+i) cR(H+i). In

the same way it is shown that R(H-i) cR(H-i). Our proposition

is proved.




1+

Proposition I.3.3: Let H be hermitian with domain of definition
D(H). Then

Il (H-z)£fll =z |Im z|Ifll, £ €D(H), z €C.

Proof: Let z =a+ib with a,b €IR, b #0. Then H-a is hermitian
and

Il (H-2) £l I ((H-a)-ib) £l ,

blll (& (r-a)-1) €l = [b]lI£l. .

As a consequence from Proposition I. 3.3 we get that for every
hermitian operator H with domain of definition D (H) the operator
(H-z)—1 exists with domain of definition R(H-z) and is bounded,

i.e.
I (H-2) " Vel < Tiﬁr;Tufu, £ €R (H-2),

provided Im z % O.

Theorem I.3.3: Let H be hermitian with domain of definition

D(H). H is essentially selfadjoint if and only if

R(H+i) = H.
Proof: H is selfadjoint if and only if R(Hxi) = H, but according
to Proposition I.3.3thisis equivalent to R(Hti) = H. a
Next we treat some examples:

1St Example: We set H = Lz((—ﬂ,+ﬂ)),

- (-
D(H ) = C((-m,+m)),

Hou = -u'Y u ED(HO).
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Then D(Ho) is dense in H and HJ is hermitian, since by partial

integration
+7 _ +7
S (mu")v dx =/ u(-v'"Y) dx,
- -T

u,v €Cg((—ﬂ,+ﬂ)), Ho' however, is not essentially selfadjoint.
This is seen as follows: For u ED(HO) we even have

+7 B
((Ho—i)u,v) =/ (-u''-iu)v dx,
-
+ L _
=/ (-uv''-iuv) dx,
-
+7

=/ uWTFiv) dx, v €C3((=7,+71)).

Vel

v = e "is a twice continuously differentiable function on
[-7,+7] with-v'"+iv = O on [-7,+7]. Thus v €L2((—ﬂ,+ﬂ)) is
orthogonal to R(Ho—i), but v #0. Therefore R(Ho—i) is not dense
in H.

nd

2 Example: Again H = LZ((—H,+W)), but

D(H.‘) = {UIU. €C2([_1TI+1T])I u(=m) = u(""“)l

u'(=m) = u'(+7m)},

N |
H1u = -u'% u ED(H1).

By partial integration it can be easily shown that H1 is hermi-

tian. We claim that H1 is essentially selfadjoint. To prove this

we first observe that the functions

0y (x) = Aeikx o, 51,22,...,
vam
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have the following properties: ©, ED(H1),

_ .2

{wklk =0,%1,t2,...}js a complete orthonormal

system in H.

Our assertion is then furnished by the

Proposition I.3.4: Let H be a hermitian operator in a Hilbert

space H with domain of definition D(H). If there is a complete

orthonormal system {$1,$2,...} in H with

(I.3.6) Hak = xkak, k=1,2,...

for some Ak €EC, k=1,2,..., then H is essentially selfadjoint.

Proof: From (I.3.6) it follows that Ak € IR. The set

N
D ={f|f= % Ckak for some N €IN and some c,,...,Cy €C}
k=1 N

is contained in D(H) and dense in H. Let g €H. Thus for each

€ >0 there are a N(g) €IN and d1""’dN(e) €T such that

N(¢g) -
g - £ aoell < e.
k=1 k'k
dy N(e)
If we set ck = T 131 and fN(s) = E ckwk, then
k k=1
lg —(H+1)fN(E)H < e.
Thus R(H+i) is dense in H. Replacing Xk+i by Xk-i we get that

also R(H-1i) is dense in H. Our proposition is proved.
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Of course H1 is not selfadjoint since R({H+i) cCo([-n,+n]) c

L2 ((=7,+1)).

3rd Example: We set

D(Hz) = {u] u €L2((—ﬂ,+ﬂ)). There are a N € IN and complex

numbers u1,...,uN such that
+N .
u({x) = 1 Tz ukelkx a.e. on (-m,+m)},
V2T k=-N
N

H2u = -u"'", u ED(H2).

Then H, cH,. Of course the numbers u, in the definition of D(Hz)

2 1°
are determined uniquely, namely we get

+ _ik
u = — /[ u(x)e kX dx.

k V21 -7

D(Hz) is dense in H = L2((—ﬂ,+ﬂ)), H., is hermitian. Proposition

2
I.3.4 shows that H, is essentially selfadjoint. We have H EﬁTr

but in view of the proposition to follow we even get

2

Proposition I.3.5: 1. Let T.,T., be densely defined linear opera-

1772
tors in H with domain of definition D(T1),D(T2). Let T

cT

2 1°

Then

2. Let A be a selfadjoint operator in H with domain of definition

D(A). Let T be a hermitian operator in H with domain of defini-
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tion P (T) and with

A cT.

Then

A

T.

Proof: Let y ED(T?). Then we have
(Tyx,y) = (T1x,y) = (x,TTY), X ED(TZ).

Thus y ED(TE) and Tgy T?y. As for the second assertion, it now

follows with the first one:

il

AcCTcT* cA* = A

which implies A = T. (]

4th Example: We set

2 +oco 4 +T _
D(Hy) = {u] ueL (-m,+7), ¥ k*|/ u(x)e

k== -7

2

ikx ax|? < 4w},

400 +T . .
H3u = X kzggﬁf u(x)e-lkx dx)—l—elkx, u €D(H3).
k==co - V2T

Evidently, H We now show that H, is selfadjoint. First H

2 3° 3
is hermitian since

cH 3

M B T ~ikx, . eik-
(H3u,f) = X k"((— J ux)e dx)—,f)
k=-o V21 -1 V2T
+7 +o0 5 eiky e-ikx
=/ u(x) I k™ 5 f(y) dy dx,
-Tr k:—oo -T m \/QT
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+T +oo 5 T -iky ikx

=/ u(x) I k™ J  £(y) dy dx,
-7 k==co -1 V2m V2T
(u,H3f),

u GD(H3), f ED(H3). Now we want to show that H, is selfadjoint.

3
For any £ €L2((-ﬂ,+ﬂ)) we have to solve the equations

(H3+1)u = f,
(H3—1)u = f.
If we use the notation ¢ = —l—elk’, k €2Z , we have
Vam
+co
f= Xz £, @
k= —co k'k
and u, = E U, 9 with Uy = 53— is the solution of (H3+1)u =
k== k™+1i
f (observe that k4[u1k|2 é[fklz and consequently u, €D (H,));
analogously we get that u, = E Uy P with Uy = 3 - is in
k== k™-i
D(H;) and solves (Hj-i)u = f. We get H; = ﬁ; = ﬁ? with Propo-

sition I.3. .

The next theorems are important for applications.

Theorem I.3.4: Let H be hermitian in H with domain of definition
D(H). If there is a real number c¢ such that

R(H+c) = H,

then H is selfadjoint.
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Proof: Let g €D (H*). Then we have for all f €D (H) = D(H+c) the

equations
(HE,g) = (f,H*qg),
((H+c) £,9) = (f,H*g) + (f,cq9),
= (£, (H*+c)qg).
Since R(H+c) = H there is a ¢ €D (H) such that
(H+c)yp = (H*+c)g,
((H+c) £,9) = (f, (H+c)w) = ((H+c)f,0).
Consequently D (H*) <D (H), and our theorem is proved. o

Theorem I.3.5: Let H be hermitian in H with domain of definition

D(H). If there is a real number c¢ such that (H+c)--1 is densely
defined in H and bounded, i.e. Il (H+c)fll za llfll, £ €D(H), for

some positive constant a, then H is essentially selfadjoint.

Proof: If we can show that R(H+c) > R(H+*c) = H, then it follows
from Theorem I.3.4 that H is selfadjoint. Let now g €R (H+c).

Then there is a sequence {fn} with fn €ED(H+c) = DPH), n=1,2,...,
such that

(H+c)fn-+g, n -oo,

Since IIf -£ |l <all (H+c) (f_ -f )l we obtain that £ -f, n-»«, for
n m n m n
some f €H. Thus

i

HH(fn—fm)H H(H+c)(fn—fm)—c(fn-fm)ﬂ

A

I (H+c) (fn—fm)ll +|cl fn-fmll .

Consequently the sequence {an} is also convergent and f is in
D(H) with

(H+c)f = g.

Our theorem is proved. o
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II. Spectral Theory of
Selfadjoint Operators

§ 1. The Resolvent of
Selfadjoint Operators

Definition II.1.1: Let T be a linear operator in a Hilbert space

H with domain of definition D(T). The resolvent set of T is the

set of all z €C such that

R(T-z) = H,
(T-2z)x = O implies x =0,

(T-z)~ | is bounded.

We denote the resolvent set of T by Z(T). Its complement.

S(T) = €C-Z(T)

is called the spectrum of T. If z €X(T), then (T-z) | is

the resolvent of T in z.

In view of Proposition I.3.3 the theorem to follow is

by

Theorem II.1.1: Let A be selfadjoint in H with domain of

called

close

defini-

| tion D(A). Let z €T, Im z *+0. Then z €X(A), and we have

1

oy =1
I (Aa=2) "Il < 2
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Proof: According to Proposition I.3.3 we have
(II.1.1) I (A-z)fH = [Im z|[lIfli, £ € D(n).

As in the first part of the proof of Theorem I.3.2 we can show
that R(A-z) is a closed subspace of H if Im z #0. If R(A-z) #H,
then there is a g €H such that g #0,

((A-2z)f,g) = 0, £ €D(A).

Thus
(Af,g) = (Zfrg) = (f:Eg):
Ag = Eg.
From (II.1.1) it follows that g =0. Our theorem is proved. o

Theorem II.1.2: A real number xo is in £ (A), for a selfadjoint
operator A in H with domain of definition D(A), if and only if

It (A-—Ao)fll 2 clfll, £e€D@),

with some positive constant c.

Proof: Let Ao € (A). Then H(A—XO)fH&chH, f €D(A), for some c >0.
Now, let

| (A—Ao)fll z cllfll, £ €D,

for some ¢ >0. As in the first part of the proof of Theorem I.3.2
one shows that R(A—AO) is a closed subspace of H. From this it
follows as in the proof of the preceding theorem that R(A—Ao) =H.

Theorem I.3.4 completes the proof. a
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For the resolvent of a selfadjoint operator A in H we often

write

(II.1.2) R, = R_(A) = (A—z)-1, z ES(A).

Next we prove the resolvent equation.

Theorem II.1.3: Let A be selfadjoint with domain of definition
D(a). Let Z12 €Z(A). Then

2

(ITI.1.3) R -R = (z,~-z,)J)R_ R .
z, 2, 1 72 z1 z,

Proof: For z €X(A) we have

(A—z)RZf = f, f€H,
RZ(A—z)f = f, £e€D(a).
Thus
R -R_)g = (A-z,) 'g'-(A-z,)
(R, z.'9 = 21 g - (A-z, gr
1 2
-1 -1 -1 -1
= (A-z1) (A—zz)(A—zz) g —(A—z1) (A-z1)(A—zz) g,
= (A-z,) " ((A-z.) (A-2,) = (A-z.) (A-2,) )
= z, z, z, z, z, g,
_ _ -1, A _ -1
= (A-z,) (A-z,-(A-z,)) (A-z,) g,
= (z,-z,)R_ R_ g, g €H.
1 72 z, 2,
Our theorem is proved. a

The preceding theorem has far reaching consequences, namely
the analyticity of RZ. We prefer to give another proof of this

property of the resolvent.
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Theorem II.1.4: Let z_ €X(A) and Iz—zol <R, I"'. Then z €Z (A)
o

and

[ee]

— _ k_ ki
(IT.1.4) Rz = X (z zo) Rz .

k=0 o]

The series in (II.1.4) converges with respect to the norm of
L(H,H).

Before we give the proof we remark that HRZH >0 if z €z (A).
Thus it in particular follows from Theorem II.1.4 that X (A) is
open. We also remind the reader o$ a general theorem in Banach
spaces B. If B €L(B,B) and if lIBll <1, then

(I1.1.5) (1-B) ' = » B,

k=0

where the series in (II.1.5) converges in the topology of the

space of bounded operators L(B,B) from B into itself.

Proof of Theorem II.1.4: Since [z—zOIIIRZ [ <1 we can apply

o)
(IT.1.5) to the operator (z—zO)RZ . This yields the expansion
o
(I—(z—zo)Rz )_1 = X (z-zo)kRZ .
o k=0 o
We set
C= I (z-z )kRk+1,
k=0 Zo
= R (I-(z-z)R_ )"
o'z !
o o
T (o -1
= (I-(z ZO)Rz ) R_ .
o o
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We want to show that C=R_. Firstly we have Cf €D(a), £ €fl.
Then

-1

(A-z)CEt = (A—zo)(I—(z-zo)Rz )-(I—(z—zO)RZ ) Rz £,
o} o o
= (A-z )R f = f.
o'z
o
Thus R(A-z) = H. On the other hand
C(A-z)f = (I-(z-z )R ) 'R (A-z)f,
o'z zg

-1
(I (z-zO)Rz ) RZ (A—zo)(I—(z-zo)RZ ) I,

O o (o}

f, £€Da),

and we obtain the uniqueness of A-z. Since C is the bounded in-

verse of A-z our theorem is proved. o

As a consequence of Theorem II.1.4 we obtain that for g,f €#
the function ¢ (.) = (sz,g) is holomorphic in Z(A) and admits

the expansion

g + k
$(z) = T (RS£,9)(z-z)
k=0 (o}
around z _where |z-z | <IIR T
o o z

(o]

Next we characterize the adjoint of Rz.

Theorem II.1.5: Let A be a selfadjoint operator in H with domain
of definition D(A). Let z €X(A). Then
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Proof: Let f,g €D(A). Then
((A-2)f,9) = (£, (A-2)g).
If we set f'=Rzu, g'=REV, then

(u,REV) = (Rzu,v) = (u,R;v)

Since u,v run through all of H if f,g9 do so in D(A) our theorem
is proved. o
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§ 2. Spectral Families

First we concentrate on the case of a finite dimensional
Euclidean space H. Let dim H =n, let A be a hermitian operator
in H, i.e. A is represented by a hermitian (n,n)-matrix which is
also denoted by A. If {w1,,..,®n} is a complete orthonormal sys-

tem in H of eigenfunctions of A belonging to the (real) eigen-

values X1 gxz ... gkn, then
n
f = i§1 (f,0;)0.,
n
Af = 121 A0 )0,
R f = (A—z)-1f = 2 —l——(f ©.)o, Im z #0;
z j=q M4 S !

here the eigenvalues are counted according to their multiplicit'tes.

We set

z (£,0.)0., if A zA
_ i, <) it 1
E(A) £ ={

0, if X <2 f eH.

1’

Then E(A) is bounded, everywhere defined and constant on [—w,x1),

ey ) .
[ o)y LAy 2y, 1) i A, #2r, .. In particular we have

E(A) = O, A <A

E(A)

1]
H
-
>
[\Y]
>
-

(E(Ki+€)-E(Ki—€))f = z (f,wj)wj

if € >0 is sufficiently small. With what was said before on the
E(X) we obtain
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E(A+0)f = 1im E(A+e)f = E(X)f, £ €H.
>0,
-0

Thus E(A)f is strongly continuous from the right. We also easily
get

E(ME(n)

E(min(A,u)),

E(A)* E()A).

il

Thus each E(A) is a projection; the set {E(A)|[X €IR} cL(H,H) is
called a spectral family. In what follows this notion is carried

over to infinite dimensional Hilbert spaces. We start with

Proposition II.2.1: Let H be any Hilbert space. Let M1,M2 be two

closed subspaces of H. Let P1,P2 be the projections from H onto

M1,M2 resp. Then

M1 cM, if and only if P,P, =P,.

Proof: Let first M1 EMZ' Then P, f €M1, P.P.f=P . f, £f €H. If con-

1 271 1

2P1 =P1 we get for £ €M1: P1f =f, P2P1f =P1f =f and

consequently P1f =f €M2. ]

versely P

From now on H is again an arbitrary (possibly infinite dimen-
sional) Hilbert space. We want to define the notion of a spectral

family in H:

Definition IT.2.71: Let there be given a projection E()) in H for
each X €IR. Let the E(A), X € IR, have the following properties:

(II.2.1) E(A)E(u) = E(min(r,u)),
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(I1.2.2) E(X0)f = 1im E(M+e)f
>0,
-0

exists for every f €H and every A €IR and is equal to E(A)f,

(IT.2.3) E(AM)f - 0, £ €H, X »~,

(I1.2.4) E(A)f » £, £ €H, X >+,

Then the set {E(X)|A €IR} is called a spectral family.

Proposition IT.2.2: Let {E(X)|X €IR} be a spectral family. Then

E(ME(n) = E(WM)E(X),

u,A €EIR.

Proof: Follows from (II.2.1). o

Definition II.2.2: Let {E(A)|X €IR} be a spectral family. Let

-wo <a £b <+w, A =[a,b]. Then we set

E(A) = E(b)-E(a).

Proposition II.2.3: For a spectral family {E(A)|X €IR} the opera-

tor E(A) is always a projection. If A',A'' are two closed finite

intervals with

o o
A' DA = ¢

then
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E(A")E(A'" ) = O = E(A')E(A").

This is equivalent to

E(A")H = M(A*) LM(A'Y) = E(A'YHR.

Proof: For f,g €H we get
(E(A)f,9) = (£,E(A)g),

E(b)2 +E(a)? -2E(a)E(b),
E(b) +E(a) -2E(a),
E(A),

E(A)E(A)

Il

where we have applied Proposition II.2.2 and (II.2.1). If

''=[a,bl, A'" =[c,d] we can assume that b <c. Then with (II.2.1)
E(A")E(A') = (E(b)-E(a)) (E(d)-E(c))
= E(b) -E(a) -E(b) +E(a)
= 0.
With Proposition II.2.2 we get E(A'}E(A') = O. o
b
Next we define the integral /S £(A)dE(A) for continuous func-
a

tions f.

Proposition II.2.4: Let f:[a,b] »C be continuous. We set

s(e) = sup (8| [EO-£0,) & & fm A, Apelab) mt 1A-A,la8]
for & >O0. LetS' = jreeerX i ) = (A% A% ) be two parti-
tions of the interval [a,b] with a =X} <A} <... <A’ . =D,

— 1 L] AR} w—
a-—A1 <A2 <... <Xn+1 = Db,
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max [hjgghglos ste),
1€ism

max A=At < S (e).
1sksn K¥1 K

If we set

m

= E EODEO-EOD),
n

T''= K§1 f(k;*)(E(k£+1)—E(A£))

with points X; E[Ki,Xi+ 1, K**E[Kéﬂk" 1, then

k k+1

1

fT*=T**y < 2¢.

Proof: Let Zﬂ“ be the partition of [a,b] with the points x;,...,

1 e s i 5 1 ] 3
Am+1,x1,...,kn+1. Let us assume that in [Ak’kk+1] the points
Ak,xk1,...,xk ,Ak o = Ak+1 with

P Px
- = !
Al = Xk1 <Ak2 <... <Ak <Ak o Xk+1
P Py
in .
belong to 5 and that w, , E[Akl,kkl+1], 1<k=<m, 1<1<p; then
we set
m Pk
T'" = ¥ I f(u, - )(E(r J=E(A,_ )).
k=1 1=1  *! K141 k)
Evidently
m Pk
T'= ¥ I £@AX)(E(X )=E(XA, ))
k=1 1=1 % K141 k1
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and
m pk
T'"-T' = X S (f(u, )=£(AX*))-(E(X )=E(A, )).
k=1 1=1 kl k K149 kg

Now we want to make use of a more general formula, namely: Let
o}

o]
A1,...,Aq be closed intervals of the real axis with Ai nAj = ¢

if i #j. Let 61,...,€q €. Then

g 2 q —
(IF.2.5) I = e.E(A)fII" = X e.e.-(E(A,)E,E(A.)E),
3=1 J J i,5=1 1] 1 J
q
(II.2.6) = 3 e |llE@)EI?,
1 J J
J
d 2
(I1.2.7) = T |e.|“(B(A.)E,E)
=1 J J

by proposition. II.2.3; (II.2.7) immediately furnishes
Herr-r )£l < 2l l%. The inequality Il (T -T'*) £l sc?lfl? is

proved analogously. Thus

frt-rrrlisfior=T7 " +llT*"-7"' || < Ze. o

Proposition II.2.4 enables us to give the following defini-

tion:

Definition II.2.3: Let {E(X)|A €IR} be a spectral family. Let

A=[a,bl, p:4 -C be continuous. For n=1,2,.. let there be given

closed intervals Afn),...,Aén) with
n
kn
A= u A,
=1

) . %(n)
A% A =0, 185, 1 24,3 5k,
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(II.2.8) max [Agn)| - 0 if n -»ow;
1gisk *
n
let xin) EAén), 1 <13 gkn. Then the operators
n
- 5 (n) (n)

i=1

converge in the norm of L(H,H) if n »w., The limit does not de-
(n) Aln)

1 rees 1By ’
n

provided (II.2.8) is fulfilled, and it does also not depend on
the Ain). It is denoted by

pend on the choice of the sequence of partitions A

b
S o(AM)AE(X) = J @(X)AE(A) = @(E,A).
a A

Let us consider the function a:Xx - (E(A)Ef,f), X €IR, for fixed
but arbitrary f €H. o only assumes real values and for X <u we
get

a(u)=a(r) = ((E(u)-E(A))E,£f)

(E([x,u]) £, £)

IE(IA, D) €12 2 o.

I

Thusuh’monotonically non decreasing and, in particular, it is of

bounded variation. We also have

a()\) -0, A > =0

14

G (1) »UElZ, A -+oo.

We want to 7Teview now some facts on functions of bounded
variation. Our reference is [RN, pp. 7 ]. Let I be a finite
closed, open or halfopen interval. Let f:I »IR be a function.
Then f is said to have bounded variation if there exists a fini-
te number c¢ such that
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(I1.2.9)

™Mo

lf(xk)—f(x )| sc

k=1

k=1

for every n-tuple (xo,x1,...,xn) with xi €I, 0<i £n, X <x1 <eeo
< xn, n=1,2,... . The infimum of all c¢ for which (II.2.9) holds
is called the total variation of f on I, shortly T(I) =Tf(I). If
f:I »C is complex valued then f is said to have bounded varia-
tion if and only if the real and the imaginary part of f have
bounded variation. Every real function f:I -IR having bounded

variation can be decomposed into

(Ir1.2.10) £ = f1-f2

where fi:I - IR have bounded variation, i =1,2, and, moreover, are
monotonically non decreasing on I. We can take f1(x) = Tf(Iﬂ[a,x]),
x €I, a = inf{g|g €1}, f2(x) = Tf(In[a,xJ)—f(x), x €I. Of course,
any bounded monotonically non decreasing f£:I -»IR has bounded vari-
ation. If I = [a,b], a2:I IR is monotonically non decreasing and

if f:{a,b] IR is continuous, then the sums

k
n
o™ ™) -ax{M),
_ 1 1 1-1
1=1
a = xén) <x§n) < ... <xéz) = b, €{n) E[x{?%,x{n)], 11 gkn,
e s . _ e fn) __(n)
tendto @ limit if n »w, provided §(n) = max (x Xq o)
P 1-1
1§l§kr‘1'
tends to O if n »w. This limit turns out to be independent of"*
the choice of the sequence of partitions (xén),...,xén)) of [a,bl
n
and ©f the choice of the &{n) €[X{E%,X{n)]; it's designated by
b b
S f(x)da(x) = J £ do = [ f da.
a a [a,b]

If a:{a,b] »IR has bounded variation and if o = o, -, is decom-

posed as in (II.2.10) then we set
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b b
S f(x)da(x) = J £ do = [ f do,
a a [a,b]
b b
= [ f du1 -7 f daz.
a a

Let us remark that for u1,a2 we can also take %(a(x)+Ta([a,x])),

%(Tu([a,x])—a(x)); these quantities are called the positive and
the negative indefinite variation of a. A complex valued function
a:I >C is said to have bounded variation if u1 =Re «a, a2 =Im o
have bounded variation. If I = [a,b] and if f:[a,b] IR is con-

tinuous we set

b b
S f(x)dae(x) = J £ do = [ f do,
a a [a,bl]
b b
=/ f du1 + i [ ¢t ddz.
a a
is said to have bounded variation on [a,+w), (-o,b], (-, +w®)

respectively if

(I1.2.11) Tu(la,b]) <¢c for all b, a <b <+,
(IT.2.12) Ta([a,b]) <c¢c for all a, -« <a <b,
(I1.2.13) Ta([a,b]) <¢c for all a,b, - <a <b <+,

respectively. If oa:[a,b] »C has bounded variation we also write

b
T, ([a,b]l) = s [da(x)],
a

and consequently we set in the cases (II.2.11), (II.2.12), (II.2.13)

+c0

S |]de(x)]| = infic]c >T ([a,b]l) Vb, a <b <+=},
a

b

J |da(x)| = inf{c]c >T ([a,b]) Va, -» <a <bl,
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+co
j |de(x)| = infic|c >T_(la,bl) Va,b, -= <a <b <+w}.

~00

If f:(-w,+x) »IR is continuous and bounded, if as(=w,+x) =T has

bounded variation and if 1lim J f do exists, then we set

b+, a
a->—co
+oo b
S £ do = 1lim [ £ doa.
) b+, a
a—-r—co
+oo b
The integrals / f da, / £ do are defined analogously. All these
a -0

definitions can be carried over to complex valued functions f by
considering Re f and Im f£.

Now we study the function (E(A)f,g), f,9 €H by means of the

theory of functions of bounded variation.

Theorem II.2.1: Let {E(A)|X €IR} be a spectral family. Then the
function (E(.)f,g) has bounded variation on (-«,+x) for every

f,g €H. Moreover

+co
;oo la@EmYE,g)| < ILEh-ngll.

If ¢:A->C is continuous on the closed interval A = [a,bl, then

(@(E,A)E,9) = J @(AM)d(E(X)£,9).
A

Proof: We decompose A into
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O O
with closed intervals Ai with Aj nAk = ¢, j *k. Then
n n
T lEBDE9] = = [(EG)EEMB)],
i=1 i=1
n
s I "E(Ai)f”-HE(Ai)g”
i=1
n 1 n l
<{= HE(A.)f“le-{ . uE(A.>gn2}2,
L Z i | . i
i=1 i=1
- I (E(A,)E,f) 2.{ ¥ (E(A.)g,9) 2:
L= * Lo *

= [lEA)EI-llEA)gll < W El-ligll.

Since A was arbitrary, the first part of our theorem is proved.

As for the second part A is decomposed into closed intervals

Ain),
kn
A= u al®,
i=1 *
®(n) ,%(n)
for each n € IN with Aj nAk k= ¢, J#k, 1 21,3 ékn, and with
n
1im max  [a{™ | =0. 1f T = 3 o0 ™hE@™) with 2 (M eal™,
nwo 1gigk * s * * * *
n
we get:
kn
_ (n) (n)
(Tnf,g) = z w(xi )(E(Ai £,9)
i=1
-» (p(E,A)f,g) = J o(MN)d(E(X)E,q9),
A
n —»oo,




H4

Theorem II.2.2: Let {E(X)|X €IR} be a spectral family. Let A be
a closed interval. Then

lo(E,A) < max |@(r)],
AEA
lo(E,A)fll € max |@(A)]|IIE(A) £

AEA

for any continuous function @:A -(C.

Proof: The notations are chosen like in the proof of Theorem
IT.2.1. Then for f €H

k
I £l 2
n

I
™M

(n) ;2 (n) 2
[w(xi ) | NE@; )",

i=1

A

max Iw(A)IZNE(A)fHZ.
AEA

Theorem II.2.3: Let {E(A)|X €IR} be a spectral family. Let A be

a closed interval. Let ¢:A »T be a continuous function. Then

©(E,A)* = ©(E,A),

where ¢ is defined by ©(A) = @(A), A €A.

Proof: We have for f,g e#H

(p(E,0)£,q9) S o(N)A(E(M)YE,q9),

A

=/ @(\)A(£f,E(N)g),
A

=/ o(A)d(EM)g, ),
A
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S e(M)A(EMN)g,£),
A

(¢(E,A)g,f),

= (£f,0(E,A)qg).

Theorem II.2.4: Let {E(A)|X €IR} be a spectral family, let
@:IR »C be continuous and bounded. Then

b
lim J @()M)dE(M)E
a-=o, a

b+

exists for every f €H and is denoted by

+co
Ww(E)E =/ @(A)dE(N)EL.

-0

Moreover, @(E) is in L(H,H) and

lo(E)l < sup | ()
AETIR

If additionally ¢(A) -0 for X »+x and for X »-«, then

b
/s e(X\)AE() -9(E)I - O
a

for a 2=, b >+,

Proof: Let a' <a <b <b'. Then

b’ b
I/ @(MNAEM)YE -7 o(AM)dE()
a’ a
a b!
=/ @(A)HAE)E +/ @(A)AE)fl,
a' b




N3

a b!
s s oM)AEM)El + It7 @ (A)YAE(A) Ell,
at b

sup o) | (I(E(a)-E(@ ) £l + I (E(b")-E (b)) £ll)
AEIR

A

1

sup |©(2)| ((E(a)-E(a'))£,£))2 +
AETR

IA

1

+ sup o) | (((E(b*)-E(D))E,£)) 2,
A€EIR

—-—

1

sup I(p(k)[(E(a)f,f)2 +sup [w(k)l((I—E(b))f,f)z,
AEIR AEIR

A

where we have used the second inequality in Theorem II. 2.2 and
the monotonicity of (E(A)f,f). Letting a tend to -« and b tend

to +» we see that

b
lim J @(A)dE(A) £
a-»-w, a

b+

exists. The second inequality in Theorem II.Z2.2 also shows that

©(E) €EL(H,H) and llo(E)Il € sup |@(})
AEIR
tion the preceding calculations show that for any € >0

. As for the last asser-

b! b
s @(MAEMNEf =/ o(M)AEM)Ell < el £l
a' a

if a' <a <b <b' and if -a,b are sufficiently large.

The formula for HTan2 in the proof of Theorem II.2.2 shows
that

b 2 Db 2
(I1.2.14) I/ @(M)AEM)EIC = 7 @A) | “d(E(N) £, £)
a a




Uy

for any f €H, any a,b, a <b, and any continuous ¢:[a,b] »C€. If
p:IR »C is continuous and bounded we get therefore

e 2t 2.
(I1.2.15) I/ @MN)AEM)YEI® = & [o()|“da(E(M) £, £).

-0 -—C00

=[c,d] be two closed inter-

Theorem II.2.5: Let A1 ={a,bl, A

2
o o
vals with A1 nA2 = ¢. Let
w:A1 -» €,
¢:A2 - @

be continuous. Let {E(A)|X €IR} be a spectral family. Then

@(E,A1)W(E,A2) = 0.

Proof: Taking two Riemannian sums approximating w(E,A1) and

w(E,Az) and using Proposition II.2.3 our theorem follows.

Theorem II.2.6: Let ¥,9:A »T be continuous on the closed inter-
val A = [a,b]. Then

©(E,A)V(E,A) = @V (E,D).

Proof: Taking Riemannian sums as in the proof of Theorem II.Z2.1

we get
kn kn
s w(xin))E(Ain)) s oo™ ygnin),
i=1 j=1 ] J
kn
=z o0 ™yvoMHE™),
i=1

which proves our assertion.
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§ 3. Stieltjes's Inversion Formula.
Further Properties of Functions

of Bounded Variation

Let p:IR »T be a function having bounded variation on
(=0, +»). Then it follows from (II.2.9) and (II.2.13) that p is
bounded. As it is proved in [RN, l, for each » €IR p has a
limit from the right

p (A+0) = lim p (A+€)
-0,
£>0

and a limit from the left

p{(A=0) = 1lim p(r~-¢€).
£-0,
>0

If for example p has Jjumps in x1,...,xn with A1 <... <An but is

constant otherwise we get with

p, = p(Ak+O) -o(kk—O),

k

z €C, Im z *0,

n
F(z) = X

the formula

(IT.3.1) F(z) dz

I
M
©

oy
271 FE(ﬁT)’A(Z)) 2)

x(1)<x <A(

(2) (1)

p (A )=0 (A ):




Yo

here r_(x {10 (2)) o<, 2D 1 (2 (1) #rg, 1=1,2, 5=1,..

..,n, is a curve as described in the figure to follow:

<

‘%+ig
“

1 \ Y 1 A 3
S DU R A,
A-ie
rd
Fig. 1

r (A(1)'>\(2)
[

) is run through in the positive sense. (II.3.1) is

then a simple consequence of the residuum formula. If we let ¢

tend to O the contributions of the integration over the perpen-
dicular parts of PE(A(1),A(2)) tend to 0 and we end with

 (2)
1im -21—<f H
e->0, mt X(
>0

= o ®y Zpna

L (2)

F(A+ie)dr - £(1)

F(A-ie)dk)

(1)).

The formula to follow is generalization of this simple situa-

tion.

Theorem II.3.1: p is as described in the beginning of this

+co
paragraph. Then [/

tion F defined by

P de(A) exists for Im z # O and the func-




y3

+o0
F(z) = S XéE de(r), Im z * O,

-0

is holomorphic. Moreover,

I

|F(z) |

+oo
m S ldp(k)l-

If - <x1 <x2 <+, then Stieltjes's inversion formula holds:

16 (1, #0)+0 (1,=0)) = Z(p (A, +0)+p (A,-0))

*2
= lim zir / (F(A+ic)=F(A-ic)) an.
1
€-0, )\1
e>0

Proof: Let

i
o)

= ce e A
a A1 <A2 < < n <xn+1

Then for Im z # O, € >0

n b 1
| £ =5y )= () =F 1= de (M) ]
i=1 i a
n i+1
< 1 1
sz 7 Gmrrsg) ae |
i=1 Ay i
b

I

(I1.3.2) < ¢ [ |doe (M) ],
o a

provided § = max (A,
1sign ]

this estimate only holds if p is real valued and monotonically
non decreasing, but (II.2.10) shows the validity of this esti-
mate in the general case too. Since we can choose a fixed ¢ for
any compact subset of {z|Im z #+0} such that (II.3.2) holds for

—xi) is small enough. Strictly spoken,




ug

all z in this compact subset we have shown that
b4

S X:EdD(X)
a

is holomorphic in {z|Im z #0}. Since lim L = lim —— = 0,

too ?e+m A-=—co

Im z +0, it is easily shown that S x:;dp(k) exists.
—00

Moreover, the convergence is uniform on every compact subset of

. oo
{z|Im z #0}. Thus F(z) = S x%;dp(k) is holomorphic on
{z|Im z +0}. We have for et >0, x1 <Ay
e 1
F(M+ie)=-F(r-ie) = [ ( ))do(u),

L-(A+i€e) u-(A-ie
—co

= ——JE%}—idp(u),
- (U=A)"+¢€

A2
= 1 Ce) o (O _
D = STi { (F(A+ieg)-F(r—-1i€)) dr =
1
+c0 1 AZ &
=J E f 2 zdx dp(U)l
-0 A, (A-up) T+e

since the reader may easily verify by taking Riemannian sums
and observing that 1/((K—u)2+€?)+0, if ¢ »4w, and, if uy - -,
that the order of integration can be altered. The inner inte-
gral gives
X—U]AZ.

A

1
k(u;e) = k(u;K1,12,€) = ;[arc tan — 1

We now study the properties of k(u;x1,x2,e). We have

(I1.3.3) © <k(u;k1,kz,£) <1,




't9

(II.3.4) k(u;)\1,)\2,e) -0, -0,
uniformly on u £A,-n, and

+n, if

1

2
n >0 is any fixed number,

uniformly on u zA

(I1.3.5) k(u;l1,X2,€) -1, €20,
uniformly on u E[k1+n,k2—n]
if n >0 is any fixed number

< AZ—A1.

If f:[a,bl »C is continuous and if a <c £b, then

c-0 c-6
(II.3.6) [ f(A)de(A):= 1lim S £(X)de (2)
a §+0 a

exists. This is seen as follows: We have

c_6|l C_G'
S £(A)de(r) - f £(r)de (1)
a a
c-6""
=7 f(A)de (2)
c-¢!
c-¢6"'"
=7 (f(x)-f(C))dp(k) + f(c) (p(c—é")_p(c_él))’
c-6"

0 <é'" <8' <c-a. Since p has a limit from the left in c and
since f is continuous we arrive at our assertion. Similarly it

is shown that

b b
(I1.3.7) [ f(A)de (A):= 1lim S f(r)de (A)
c+0 8¥0 c+¢

exists if a £c <b. Since we have the relation




90

b c-¢ c+é
(II.3.8) J £(A)de(r) = J f£(A)de (X)) + J f(A)de (2) +
a a c-6
b
+ J £(A)de ()
c+§6

for c € (a,b), 0 <8 <min{c-a,b-c} as is easily seen by going over to

Riemannian sums, we arrive at

b c-0 b
(I1.3.9) J f£(AN)de(r) = [ f(M)de(A) + J £(A)de (A) +
a a c+0O

+ f£(c) (p(ctO)-p (c-0));

here we have to take into consideration that

c+d
(IT1.3.10) 1lim [ f(A)dp () = lim{f(c) (p(c+S8)=-p(c=-8)) +
8§40 c-6 §40
c+6
+ J (£E(N)-f£(c))dp (A) 1},
c-6
= f(c) (p(ct0)-p(c-0)).
Thus we get
A1-n A1—O
(I1.3.11) D = s k(u;e)dep(n) + /1 k(uze)de(u)
—-00 >\1—Tl
A1+n
+ J k(u;e)de (u) +
A +0

+ k(k1;a)(p(X1+o)—o(k1-O)) +

Az—n A2—O
+ k(u;e)de(n) + J k(u;e)de (n)
A1+n Az—n
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+ J k(u;e)de(u) +

+ k(kz;E)(p(X2+O)-o(A2-O)) +

+co
+ S k(u;e)de (u).
A2+n
_ R | - 1 _
We set D' = D {2(0(A2+O)+9(A2 0)) 2(o(k1+0)+o(>\1 0))}. We
have
1 Aoy
(I1.3.12) k(k1;s) = - arc tan - >51 € -0,
1 Ay
(I1.3.13) k(Xz;E) === arc tan —= >3, e »0.
This yields
A1—n Xi—O
D' = / k(u;e)de(u) + J k(u;e)de (u) +
-0 A -1
1
A1+n
+ S k(u;e)dp (n) +
AL+0

A=A
2 11
—-3) (p (A, +0)=p (A, =0)) +

+ (l arc tan
m

+ 2(p (A, +0)=p (A =0)) +

Az—n
+ J (k(use)=1)de(u) + p(A,=-n) —p (A +n) +
2 1
A+
1
Az—o X2+n
+ J k(uje)de(u) + S k(uze)de(u) +
xz-n A2+O
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A=A

+ (% arc tan 28 1-%)(D(K2+O)-o(>\2—0)) +
1 +co .
+ E(D(K2+O)-D(A2-O)) + S k(u;e)de(u) -
A2+n

1 1 1 1
2p(x2+o) 2p(k2 0) +§o(k1+0)-+§p(k1-0)-
We set

T(n) = %(p(x1+o)—p<x1-o)) +p (,=n) =p (A +n) +

1 1 1
+ 5(P(A,#0)=p (A,=0)) = 5P (A,+0) = 50 (X,-0) +

1 1
+ 29(A1+o) + Ep(x1-0).
Clearly T(n) -0 if n-»0. Let us set
D' = S(nje) + T(n).

The first integral and the last one tend to O if n >0 is fixed

and € tends to O; this follows from (II.3.4). (II.3.12) yields

that

P
£

(! arc tan —%)[(p(x1+0)-p(x1—0)) +

+ (p(k2+0)—p(kz-0))]

tends to O if € »0. The fourth integral tends to O if n >0 is
fixed and ¢ tends to O; this follows from (II.3.5). The sum of
all these terms is denoted by S1(n;£). The function k(u;e) is
continuous on [A1—no,x1] for any no >0; moreover k(u;e) is uni-
formly bounded by O from below and by 1 from above (cf. (II.3.3)).
Considering the integral
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X1—O
I k(uze)de(u), O<n énol
A1—n

we can restrict ourselves to the case that p is real valued and
monotonically non decreasing (cf. (II.2.10)). Let 8 <n gno and

let A,-n = x <x%x,<...<x_ = A,-8; we obtain
1 o} 1 n 1

MBS

k(Xl;E)(p(xl)-o(xl_1)

1=1

< p(k1-6) —p(k1-n).

Choosing an equidistant partition of [11—n,x1-6] and letting n

tend to « we arrive at

x1-5
J k(uje)de(n) € p(A,=8) —p (X, =n),
-n
1
A1-O
S k(uze)de(u) = o(2,-0) —p (X =n).
A,-n
1
x1+n Az-o
The integrals [ k(u;e)de(u), S k(u;e)de (n),
A_+0 AL—T
1 2
A2+n
J k(u;e)de(u) can be treated analogously. Summing up all
AL+0
2

these four integrals we get a term Sz(n;E) whose absolute value

can be estimated by quantity §2(n) with gz(n)-eo, n -»0. Thus
D' = 8,(nje) +8,(n;e) +T(n).

Let y >0. Fixing an o >0 such that [T(n)| <v/3, |§2(n)| <v/3
and then an e_ >0 with [S1(n;eo)[ <Y/3 we obtain
D' < v,

provided ¢ is sufficiently small, ¢ geo. This proves our theo-

ren.
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We deal a little bit more with functions p:IR -»C having
bounded variation on (-«,+x). It immediately follows from the
decomposition (II.2.10) that

p(=) = 1lim p(A)

A==

exists. Also the existence of p(A+0), p(X-0), which has been
mentioned already, can be concluded from (II.2.10). Moreover it
is shown in‘[hL'f-Zﬂg ] that p is discontinuous in at most
countably many A. For the proof of the theorem to follow we

refer to [N,y.ZEO 1.

Theorem II.3.2 (Helly's selection principle): Let P iR 2C,

n=1,2,..., be a sequence of functions having bounded variation

on (-w,+xo). We assume that

lo O] = M,
+co
V(pn) = J {don(x)[ < M, n€IN.

-0

Then there is a subsequence {pn } of {pn} and a function p:IR -C

J
having bounded variation (-e,+w) such that

lo(M)] < M,
+oco
S lde (M) ] s M,

P () 2p(A), jow, X EIR.
]

The next theorem describes a further property of functions

of bounded wvariation.
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Theorem II.3.3 (Helly's convergence theorem): Let f:IR -C be

continuous, let

£(A) -0, X o too,

Let pn:IR-am, n=1,2,... be a sequence of functions having

bounded variation on (-e,+)., We assume that

pnM)*oM),n»w,kEHh

+o0
{m [dpn(x)[ < M.
+oo
Then also p is of bounded variation on (-w,+w) and / |[dp(A)]| =M.
Moreover -
+oco +co
JooEM)de (A) =/ £(M)de(A), n e,

Proof: The first part of our theorem is an easy consequence of
the definition of the total wvariation of a function. As for the

second part we choose x1,.,.,xm+1, m € IN, such that

- <A1 <A2 <... <xm+1 < 4o,

[£A)] e, A 2A,, Az

IIA
(]
-

>
IIA
>
lIA
>

f(r)- A
| £ (1) —£( j)I

where ¢ is any given positive number. Then

+oo m
|/ £(A)de(r) - =
-co j=

o
I

f(xj)-(p(KjH)—p()\j))[,

+oo
e / |dp(M)]| = eM,

o0

A




b

+oo
|/ f(K)dpn(K) =

—-00 J

o
1
=]

1 £ - (o O ) =e N
+oo

e S ldpn(x)[ < eM.

-0

A

From this it follows that

+oo +oo
[/ £EMde () = £ £(0)de (V)]

-0 -C0

A

< |

M3

f(Xj)[(D(Xj+1)-p(Kj))-(pn(ljﬂ)-pn(?\j))]I +2eM.

j=1

Ifn is sufficiently large, say N zho, the absolute value of
the last sum becomes < eM. Our theorem is proved.

Definition II.3.1: Let M >0. Then I (M) denotes the set of all

functions p:IR »C having bounded variation on (-e«,+w) and the

following additional properties:

“+co
;oo lde ()] = M,

-0

p (_°°) = O,

p(A+0) = 1lim p(A+e) = p(A).
e->0

Proposition II.3.1: Let p:IR - C have bounded variation on
(—w,+m) . Let

+co
Mz /s |de(M)].

Then the function e*:IR -»C, defined by p*(X) = p(A+0) -p(-») is
contained in I'(M). If f:IR -»C is continuous and if f(XA) -0,

A >+, then




5t

+oo +co
S f£(M)de(r) =7 £(A)de*(X).

-—Co -co

+oo
Proof: First we have to show that /S |dp*(\A)]| <M. Let us take
—00

X1,...,A m € IN, such that

m+1’

A .cee
1+£ <A2+e < <Am+1+e,

where £ is any positive number. Then

" ~Ma

lp*(xj+1)-p*(kj)l =

3=1

m
= 1lim X |p(A., . +e)-p(A.+e)| = M.

+oco
Thus p* has bounded variation (-«,+w) and S/ |dp*()A)| <M. Con-
-0

sequently p*(X+0) is well defined for any » € IR. Since ¢ is
discontinuous in at most countably many points we can choose a

sequence {av} with

a, >0, v €IN, a, -0, Vv oo,

p is continuous in a,r v € IN.

Then p* (A+0) = lim p*(k+av) = lim D(X+av+0) -p(-w) =

V=00 V=00

= lim p(A+av) ~p(=o) = p*()). A similar argument shows that
V~>c0

p* (=) =0. Thus p*er(M). Let &' >0. m,X.,so are chosen in such

3
a way that |[f(\)]| <e*, Agx1,[f(xﬂ <e', Az lfu)—fuj)

m+1’

< < < . < .
5 A _xj+1, xj+e <A _xj+1+e, 0 <ese_. Then

A
™
-
>
liIA
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+oo 400
[/ £()de*(X) - 7 £(M)dp(A)]| =

—co -0

+co
|7/ f£(A)de*()) -
-0 j

nms

A ) (p*(h. .)=p*(A.
1 £( J) (p*( j+1) p* ( J))

* —-pn* -
[£() (0% Oy )=e* (1)) —£0+e) (0 (hy,

+co
f()\j+e)(p()\j+1

-C0

[£005) (0% Oy, D =p* (1)) -

1

+e)-p(xj+e))]+

+e)-p(xj+e)) -/ £(\)de (M) ]

- f(xj+e)(p(kj+1+€)—p(kj+€))][,

O<e éeo. Making € sufficiently small we arrive at the

assertion.

For practical reasons we give

Definition II.3.2: By T'*(M) we denote the set of all holomorphic

functions F on Im z #+0 which admit a representation

+oo
F(z) = s

dp (A)

ez Im z £#0,

where p is some element from T (M).

We now show that p is determined uniquely by F.

Theorem II.3.4: Let p €T (M) and let

1P

+oo dp1(x) +oo dpz(X)
J == = S ———, Im 2z 0.
-z A—-2z

-0 —




%9

Then pT(l) =p2(x), A EeEIR.

Proof: For u,X €IR, u <A, we get by Theorem II.3.1 (Stieltjes

inversion formula)

%(02(A+0)+p2(x-0)) —%(02(u+0)+02(u-0)) =

1
(91(k+0)+o1(X-0)) —5(01(u+0)+o1(u-0)).

Nl—

Since pPyrP, are discontinuous at most countably many points,

the set E, where p, and p, are continuous, is dense in IR. If

1
A,u €E we get pZ(X)-pz(u) = p1(X)—p1(u). Letting u tend to -«
we obtain p1(x) = pz(k), A €E. The same argument as in the first
part of the proof of Proposition II. 3.1 now shows that p1(x) =

pz(k) for any A €1IR. o

r* (M) also has a closedness property, namely

Theorem II.3.5: Let {Fk} be a sequence contained in I'* (M). Then

kn} of {F, } with

there is a subsequence {F

Fk(z)aF(ﬂ, n-»ew, Im z %0, F €Tr*(M).
n

Proof: We have

+eo dp, (A)
F, (z) = J r KEIN, Im z %0,
K X
where o, €T(M). Since p, (-=) = O we easily obtain that [pk(K)| <

M. Helly's selection principle shows that a subsequence {pk } of
{e,} such that n




b0

(M) »p(A), N>, X €IR,

k

n

+co
;o lde ()| s M,
[o ()] = M.

Helly's convergence theorem furnishes

+oo
Foo(z) » 5 S22

Kk ez ' fl 20, Im z *0.

n

p (A+0) -p (-») we obtain an element from I (M)

Setting o*(A)
and
+co “+co

F(z):= [

=00 -0

here we have applied Proposition II.3.1.
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§ 4. Integral Representation
of the Resolvent

Our aim in the present paragraph is to prove a representation
formula for the resolvent (A-z)_1, Im z +0, of a selfadjoint

operator A in a Hilbert space H. This formula is of the follow-

ing type:

+oo
1
(sz,g) = foo x:—édp(h;f,g)

where p(.;f,g) is a function having bounded variation (-, +w).

From now on we assume that H is separable. In view of the appli-

cations we have in mind this is no serious restriction since in
most cases the underlying Hilbert space H is LZ(Q), 2 an open
subset of IR™. We need the following

Proposition II.4.1: Let H be hermitian in H with domain of defi-

nition D(H). Then there exists a subspace D' cD(H) and a sequence

{Hn} of bounded hermitian operators with the following proper-

ties:

(a) D(Hn) = D',

D' is dense in D(H) with respect to the graph-norm

of H, i.e. for any f €D (H) there exists a sequence
{£_} in D' with II£f-£ |l +llHf_-Hfll -0 as n ».
n. — —_ n n -

(b) For any f €D' we have an-er, n -,

(c) There exist, for any n, numbers an'bn' an <bn, and a
spectral family {En(x)[ A €IR} such that

n
H =/ X dE_()).
n
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(n) A (n)

1 Ttk
n

<b , and the E (A) are con-
n’ ———— "n _

Moreover, there are numbers A such that

(n) _, (n)

1 2 <

k
n

() ysa @)y ()
1 r 14 . .

kn j+1

a_ <A <o
n

stant for A <A

Proof: Since R(H*i) is a closed subspace of H, it is easy to
see that R(Hti) are also separable. From this it follows that
R(Hti) are separable (cf. Proposition I.3.2). Let e.q. {gk} be
K €D (H) and Iy =
(H+i)fk. Let nﬂn be the subspace of H which is spanned by

f

a sequence which is dense in R(H+i), let f

1,...,fn; it consists of all elements

Fh
!
MB

o CEfE' c1,...,cn € ¢,

its dimension being = n. We set
(o]
| S
D= U Wl -
n=1

Since mncmn+1' n €W, D' is itself a subspace of H. For any

f €D' there is anmn(f) €IN, and there are complex numbers

c1,...,cn(f) such that
n(f)
f = E§1 cifﬂ'

Our first assertion is that D' is dense in D(H) with respect
to the graph-norm of H. If f €D(H), g = (H+i)f, there exists a
subsequence {gk } of {gk} with dp “9s Ve

% A\

Then |l (B+1) (£, —£)1% 50, v o, IH (g, -£)112 +lE, ~£112 50, v s,

\Y Y AY

Since fk Ezﬂk cD', the first assertion is proved. Let En be
Vv Vv

J=Tse.o k1.

i
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the orthogonal projection from H onto mn; observe that mn is
closed since it is finite-dimensional. Let Hn = EnHEn; in parti-
cular H_ is even defined on H. If £ €D', then f Emp, p=n(f).
Therefore Enf =f, nz2n(f), and an = EnHEnf = Ean, nzn(f). The
sequence {HEanH} is uniformly bounded. On the subspace D', which
is dense in H, we easily get (Ean,g) -» (Hf,g) (g €D') as n tends

to «. Thus Ean 2 Hf, n->w. Since En is a projection we conclude

HEan”2 = (Ean,Ean) = (Eth,Hf)-+HHfH2, n »o, Thus the second
assertion is also proved. It is obvious that (an,g) = (f,Hng),

f,9 €D' moreover
Hn(mn) <Hi, -

Therefore there is an orthonormal basis cp1(n) Peoe ,wén) of mn’
p. = dimmn, with n

n
(n) _  (n) (n) .
Hnwj =My ey 3 =TreecsPys
and the uén) are real numbers (the eigenvalues of the restric-
. . (n)
tion of H_ to Tﬂn). Let eu(n) be the multiplicity of My Let
(n) (n)
. ..T
EJ f )? hen
Ph
HE= 5 1™ (g0,
n =1 J J J
J
P
= o ™WeMe el
=1 J J n
J
We set u(n):= 0; we have
p
n
E = I g({n),
j=1 )
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(n)

E =I-E.
O n
If £ = £ +f., f. € £ € L, £eH, then
1 727 71 n’ 72 n’ '
an = EnHEn(f1+f2),
= EHE f, = H f
n n 1 n 1
p
n
= X ugn)Egn)f1,
j=1 3 J
P
n
N N
j=0 3 ]
Now we set
E (A) = > g™ ) em.
n . (n) J

If A zbn >max{u§n)|0:;j épn}, then En(k) =I. If the last sum is
void, we set by definition En(k) =0. Thus En(k) =0, A gan <

min{uén)lo <3 épn}. It is easy to see that lim E_(A+e)f = En(X)f
>0
£-0
%k — N — .
and that En(A) En(x), En(k)En(u) En(mln{x,u}),x,u € IR. Thus

the set {En(k)lk €IR} is a spectral family (cf. II.2, pp.-3D-32).

b
n

Finally we evaluate / A dEn(A). The integral was already de-

a
n

fined in II.2 (Definition II.2.3). We choose a partition
_ 5 (m) (m) . _ 4 (m) (m)
={Ayaee e A ) Of [an,bn], i.e. a =2 <A <... <

m 1 2
m_ b , m €IN. We assume that 6(3 ) = max Ikgm)-kgm)l-éo,
m+1 n m . +1 3
1£jsm
m -, Moreover we assume that each ugn) is contained in one and
only one (A(m) A(m)), m €IN. Then

kK T k+1




b5y

b
n
— 1s (n) -
oA dEn(A) = lim pX uj (En(AKH) E( ).
a m>o (m) , (m)
n K,(AK ,AK+1) con-
tains one u;n)
e o (™ u () re th irwise distinct ei 1 h
1 reeer¥y e pairwise distinct eigenvalues, then
n
+...t +
1 . () € m7C (n)
S X dE_(A) = lim(z 2 E. 4 £ )
n - 1 . J f% 0
a m»% 1=1 j=e +...+e +1
n u(n) u(n)
1 1-1
= H .
n
Our proposition is proved. o

Let us make the following remark: Let H be a selfadjoint
operator in H with domain of definition D(H). If H' is the re-
striction of H to D', where D' is taken from Proposition II.4.1,
then H' is essentially selfadjoint. This is seen as follows:

Let g €H, let £ €D(H) with (H+i)f =g. Then we take a sequence
{fn} from D' such that

f -»f, H'f_ =-Hf, n -oo.
n n
Thus (H'+i)fn-+g = (H+i)f, and R(H'+i) is dense in H; the same

argument shows that R(H'-i) is dense in H.

Proposition II.4.2: We ass that H is a selfadjoint operator

in H with domain of definition D(#{). Let {Hn} be a sequence of

selfadjoint operators in H with domains of definition D(Hn) such
that:

(a) There is a subspace D' cH with D' <D(H), D' CD(Hn) such

that the restriction H' of H to D' is essentially self-

adjoint.
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(b) For £ €D' we have an-+Hf, n —eo,

Then

R(n)

f-R f, fE€EH, Im z *#0,
Z pA

where R(n) = (H —z)_1.
— Tz n

Proof: Let H) = {glg = (H-z)f for some £ €D'}, Im z #0. Since

H' is essentially selfadjoint, the space Hé is dense in H. Name-
ly, as in the proof of Proposition I.3.2 we get R(H'-z) = R(H-z),
Im z #0. Since H is selfadjoint we have by Theorem II.1.1 the
relation R(H-z) =H. Let g €HL-TM€ﬂ

1

- -1
2 9-R g = (Hn—Z) g - (H-z) g,
= (H_-2) " \(H-2) (H-2) g - (8 -2)" " (H_-2) (H-2) g,
n n n
= (5.-2)" '(E-m) (H-2) g,
n n
IR™ g-R gll s ——Il (H-H_) (H-2) gl 50, n »w
z g zg T | Im 2z n 9 ' *

(n)
z
to n) norms and since H; is dense in H we arrive at the asser-

Since the operators R —RZ have uniformly bounded (with respect

tion. a

Proposition II.4.3: Let H be selfadjoint in H with domain of

definition P(H). Then the following integral representation
holds for Rz' Im z *#0:
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+oco

(sz,g) = f QB%%éE‘ElI

where p(.;f,g) is some function from T (Il fllligll).

Proof: Let {Hn} be the approximating sequence of bounded her-
mitian operators which has been constructed in Proposition
II.4.1. Let {En(X)Ix €IR} be the spectral family which has been
constructed in Proposition IXI.4.1. It follows from Proposition
IT.4.1 that the restriction of H to the space D' in Proposition
IT.4.1 is essentially selfadjoint. Proposition II.4.2 now fur-

nishes

R(n)f-+R f, n»oo,
Z Z

We claim that

(n) _
(IT.4.1) R =

n dEn(X)

A=z

o U

n

As in the proof of Proposition II.4.1 we obtain (using the same

notations)
b 1 el‘l (n)+' . .+eu (n)+eu (n)
n dE_(}) n (1) -1 1 11 1 (n) )
;=2 — = 3 M-z s E . +(Iu-—
a_ 7% 1=1 1 Jme |, He..te ,_ +1 J °
n I (n) y (n)
1 1i-1
bn dEn(X) bn dEn(X)
Hyme) ) 5z = L S )
a a
n n
bn dEn(A) bn
= [ ayper— J (X‘Z)dEnU\)
a a
n n

=A (")
) By,
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since
+...
: 1 eu (n) e (n)+e (n)
u u
D (n) ! = my W )
H-z= I (u -z)- z E +(,u 2)E
1=1 j=e +...+e +1 J ° o !
u(n) u(n)
1 1-1
n
= g (X-Z)dEn(l)-
n
bn dEn(A) bn
Inserting the finite sums for /S e J (A—z)dEn(A) and
a a
n n

(n)Eé?) =0, j #3', we arrive at

taking into consideration that Ej
(IT.4.1). We have

b

BRMe oy = 1 L@ )f.q) = P AE (M) £, q)

Z 19 3 A=z n r9 - A-2 n rg)-
n

by Theorem II.2.{. The function pn(X;f,g) = (En(x)f,g) has
+oo
bounded variation on (=-w,+») with S |d(E())f,g| <l £l ligll; this

was proved in Theorem II.2.1. The defining properties of a
spectral family imply that o eT(llgllll £ll) and consequently
(R(n)f,g) € T*(llgllli£ll). By Theorem II.3.5 there is a subseguence

(n)

n.
{(R Jf,g)} of {(R f,9)} such that

n.
(szf,g) »¢(2), j-»wo, Im z %0,

with ¢ €Tr*(llgllll £ll). Since Rén)f-esz, n »w, we get ¢ (z) =(sz,g),

which completes the proof. o
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§ 5. Fundamental Properties

of the Function p(.:;£f,qg)

Our aim here is to show that o(Ax;f,g) = (E(X)f,qg) with a
spectral family {E(M\)|X €IR}.

Proposition II.5.1: Let f,g:IR - T be continuous functions with

lim £(Ax) = 1lim g(Ax) = O.
Aot A>+oo

Let p €T (M). Then the function

A
G(r) = J g(u)de(u)

-00

is from I'(M') for some suitable M' 20, and we have

+co +oo
(IT.5.1) 7 £(A)g(r)de(X) = S E£(A)dG(A).

-0 -0

Proof: First we have to show that G is continuous from the right:
Let € >0; then

A+e

G(A+e)-G(A) = S g(u)de (n).
A

If A = u1 <u2 <eoow <un+1 = Ate we get

J

H™MB

1 g(uj)(o(uj+1)—p(uj))[ <

A
MBS

(q(uj)-g(k))(p(uj+1)—o(uj))l +

g () (plug )=e ()],




+o0
< sup lg(s)-g(t) |-/ |dp(n)]| +
A<s,tsA+e —co
n
A . - . -
+\j§1 g () Lo tuyy)=p ()l

The Tast sum is estimated by

SU ?f(g)\'\-(ﬁfi)““ka*OH
Aﬁslﬂﬂ~j _r ”

asgﬂ)dm5n%dq¥ndoﬁj. The preceding calculations show that G is
continuous from the right. Let us take n+1 points x1,...,x € IR

n+1
. Then

i A A cee <A
with < < < 1

1 2

Gy -6 =
n
= ¥ |r g(Z)de (2],

M
S [dp(x)ll

T A,
i

A

sup |[g(1)]
AEIR i

™8

+oo
sup |g)| 5 [de (M),
AEIR —oo

[N

+oo +oo
Solde(\)| £ sup g s |de(n)]| =:M'.
—-co AEIR —co

The preceding calculations also show that G(A) -0 if A »~w, Thus

GEr(M'). Now we have to prove (II.5.1). If k1,...,A are as

n+1
before, then for any n >0




H

1 f(xi)(G(xi+1)-G(xi)) -

Tt Mo

n ;
- i f(Ki)g(Xi)(D(Xi+1)—p(li))l

A
n
=1z £0) 7 (g)-g(r;))de ()]
= A

+co
nesup |[£(A)| £ |de(M) ],
AETIR —co

A

[N

nesup | £(A)]|-M,
AEIR

A

provided |g(k)-g(xi)| <n, A, €A <A, .. On the other hand we may

also assume that

+oo n
Ifw £(A)dG(r) - 151 EQ DG =G| < n,

since lim £(A) =0 and, that

n Foo
[ Z £090) (O Nme () =S £M)gB)de (M ] s

1 -C0

since lim f£(X)g(X) =0. Thus we end up with
A-too

+oo0 +o
|/ £()d6(A) -5 £(M\)g(A)dp(A)| < 2n+n-sup |[£(}) ] M.
—oo AEIR

-0

The proposition is proved.




12

Proposition IT.5.2: Let p be as in Proposition II.4.3. We have
for all A €IR the relation

where the E(A), A €IR, are everywhere in H defined bounded ope-

rators having the following properties:

E(X) is hermitian, A €IR, [[E(M)I 1.

Proof: We have for c; ec, fi €H, 95 €eH, i=1,2, £,9 €H:

4+ dp (>\;c1f1+c2f2,g)

/ -z = (R (eqfqreyEy)ig),

-0

C1 (sz1 ’g) +c2(sz2Ig)

+co
1
S Fz-d(c1p(K,f1,g)+czp(>\,fzrg)),

Im z #+0. Set M = [max{Hc1f1+c2f2H,|c1|Hf1M,IclefZH}]-HgH. Then

p(.;c1f1+c2f2,g), 010(.;f1,g) +czo(.;f2,g) €T (M), and Theorem

IT.3.4 then shows
O(A;c1f1+czf2,g) = C1D(X;f1,g)-+CZP(X;f2.g)-
In the same way it is shown that
p(k;f,c1g1+czg2) = c1o(k;f,g1) +czo(k;f,92).

Since p €T (ll£Ellllgll) we get the inequality

(I1.5.2) |p(r;£,9)| < IElligl, » €R.




+3

We have (sz,g) = (f,REg) = (REg,f) since R; =RE’ Thus

e (ufg) | [T de0ig,f
A=z - —_ '
-0 -—co A=z
e - Y ——
A
=7 dp iq f),
-0 A—Z

and Theorem II.3.4 furnishes

p(k;flg) = p(>\7glf)l A EIR.

For each » €IR thus p(A;.,.) is an hermitian sesquilinear form
satisfying (II.5.2). Thus for each X €IR there is one and only

one everywhere defined hermitian bounded operator E()) with
p(r;f£,9) = (E(M)E,9).

From (II.5.2) it follows that IE(M)I 1. o

Proposition II.5.3: There is one and only one p(.;f,g) €T (Ifllligll)
such that

+oo
(R £,9) = s 92Qifd) £ qeyp.

The operators E(A), » €IR, constructed in the preceding propo-

sition, form a spectral family.

Proof: By Theorem II.1.3 we have

=R R , z, 6, %z
Z. Z

1 ot Im 21,Im z. #0.

2




H

T AEME T aEMEg, 1 _
(r = 7 ) =
pA A—Z Z

-2

- 1 —co T%9 1 2
T S(EO) £,9) RZ1—R22

=/ (A=-2 )(i?z Y © ( zZ,-2 £,9),
—o 1 2 1722

21 2% 2y 24

dp(K;f,RE g)

+
* 1

—00 2

A(E(\)£,R= q)
24

H
—co K—zz

A
We set o (N) = [ d(EM)E ). Then
z U=z

1 —co 1

ol do (A) o
A T aEMEQ)
A=z (A-z1)(k—22)'

-0 2 —co

d(EME,Rs )

+oo
1

oo A-zz

by Proposition II.5.1 and the preceding calculations. Theorem
IT.3.4 yields

021(>\) = (E(X)f,R—z-1g),
A
(II.5.3) - Mﬁl.

-0

U‘Z1

We can replace z, by z with Im z #0 and get

1
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(E(\) £,R-g) = (R_g,E(\ T),

P AEE)gEMNE

_ 7 dEMgEMT)
—oo u-z ’
+

® AEWEN)£,9)
u-z !

= [ d(E(U)f;g)

U=z !

where we have used Proposition II.5.2 and equation (II.5.3).

Let us set

[(E(u)f,g), u <A,
(E(M)£,9), v 2A.

Then
e dh % aEwf,g)
TE - u-z
+co

d(E(u)E(K)fIQ),

= s =

-0

Im z 0.

Again Theorem II.3.4 yields

T, (1) (E(u)E(N)£,9),

E(WE(E

E(min(u,2)f, £,g9 €H.

In particular each E(A) is a projection in H. Since (E(.)f,g) €
F(I £l gll) we have
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(E(A+e)f,9) » (E(M)E,9), € >0, &~0.

However

IE( +e) £-E (1) £ll 2

1l

(E(A+e)f,f) +(E(M)£,f) -2(E(A) £, £)

= (E(r+e)f,f) - (E(M)E, )
and consequently

lim E(M+e)f = E(M\) £,
£>0,
-0

A €EIR. If A »-», then (E(M)f,f) -0, since (E(.)f,f) er(ii£llllgll).
Using (E(A)f,f) = HE(A)sz we get

lim E(M)Ef = 0, £ €H.

A =—co

Now we consider the case A =+, The function (E(A)f,f) is bounded
and monotonically non decreasing from IR into the nonnegative
reals. Thus

lim (E(A)f,f) exists.
A=+

Assume that X <u. Then

IEM) E-E) El2 = (EW) £, £) - (E(A)E,£)

< sup | (E(WE,E)-(EMNE,E)] =:e(X),
A<y

and €(A) tends to O if A -»+w. Thus there is, for each f €H, an
element L(f) €H such that E(A)f >L(f), X . Set

g=£f-L(f) = £-1im E(X)Ef.
A—+oo
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For v €IR we get

E(u)g = E(u)f -1lim EM)E(M)f = O.
Ao+

If Im z #0, h €H, then consequently

40

(R,g.m) = 1 d(EJE;g,h) - o,
((H-2z) "'g,h) = o.

Since R(H-z) = H we can find an u €D (H) with h = (H-z)u. Thus
((H-2) " 'g, (H-Z)u) = 0, u €D (H),

O, uelH).

(g,u)

Since D(H) is dense we obtain g =0 and f =L(f). The first part

of Proposition II.5.3 is an easy consequence of Theorem II.3.4. o

We are now in a position to prove the main result of the pre-

sent paragraph, namely

Theorem IT.5.1: Let H be a selfadjoint operator in H with domain

of definition D(H). Then there is one and only one spectral fa-
mily {E(X) X €IR} such that

+oo
(H—z)—1 =/ Q%é%l

-0

’

where the last integral is convergent with respect to the norm
of L(H,H).
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+o b
Proof: The convergence of [ Q%ill:= lim 7 dE(A) is an easy
—_— -2 A-z
~co b+, a
Q- —c

consequence of Theorem II.2.4 (if {E(M\)|X €IR} is any spectral
family). Now let us take the spectral family just constructed
in Proposition II.5.3. Then

(R £,q) = 5 LEMEq)
z ' A-z

-0

+co
A
v T gy, £,9eH,

I

and we obtain

If there is any other spectral family {E(A)|X €IR} such that

+oo e~
R o= 5 GEQ)

z A=z
-0

we get in turn

T aEMfe) | T aEe)fq)
e A=z e A=z -

Theorem II.3.4 furnishes E(A)f = E(M\)f, A €IR.
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§ 6. The Spectral Theorem for
Selfadjoint Operators

+oco
The novelty now is that we consider integrals / @(A)dE(M)E

-—Q0

for unbounded continuous functions ¢:IR -»T. In this paragraph

however we only take a very simple one, namely @(A) =Ai.

Proposition II.6.71: Let {E(A)|X €IR} be a spectral family. Let
f €. Then

b +oo0
lim J AAE(A)Ef =: J XdE(M)E
a-—o, a —co

b+

exists if and only if

b 2 +oco 2
lim J A"d(EAN)E,£f) =: J A"d(E(A)E,£)
a—»-o, a -co
b+t
exists.
Proof: Let us first assume that
b
lim [/ AdE(M)f
a»-o, a
b+
b
exists. For the definition of the integrals / AdE(X)f the reader
a

may confer Definition II.2.3. We have then

b 2
s x AECV)EIIT £ M.
a
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We again refer to Definition II.2.3 and take the Riemannian sums

Tn for o(A) =Ar. This gives

k k
n n
(v 2™pa®™ye, 5 AaM®gpamye)
\ i i i i /
i=1 i=1
kn
= 3z A Eadhpadhe g
i3=1 + J *
k
n 2
= 3z 2T Ena™he, 6,
i=1 * *
thus
by
J ATA(E(M\)E,f) £ M,
a
b 2
and 1lim S A"d(E(A)£f,f) exists. Secondly we assume that
a»—o, a
b+
to

S ATA(E(M)E£,f) exists. Let - <c <a <b <d <+,

-0

d b 2

S = |/ XAE(XN)E =/ AdE(M) £l 5,
c a

a d >

=/ XdE(X)E + /7 AAE(A) £l ©.
c b

Taking the Riemannian sums as before we obtain

a d
§ = /S ATA(E(N)E,E) +/7 X“A(E(M\)E, ),
c b
a 2 +oo 2
£ J AAEME, ) +/ A°A(E(N)E, ).
-co b
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The latter integrals tend to O if a »-w, b »+w, Our proposi-

tion is proved.

Theorem II.6.1: Let {E(X)|X €IR} be a spectral family. Let

+oo
D = {£|f€H, I A2A(E(N)E,£) <+ool.

-0

Then D is a dense linear subspace of H. The operator H, defined
by

b
Hf = lim J AME\)f, £ €D = D(H),
a—»—o, a

b+

is selfadjoint.

Proof: Proposition II.6.1 shows that H is well defined and that
D is a linear subspace of H. Clearly H:D -»H is linear. First we

show that H is hermitian. Set

b
Habf = [ AME(X)E, £ €H.
a
b b
Then (Habf,g) = [/ AMA(E(N)E,g) = J Ad(£f,E(N)g) = (f,Habg). Thus
a a

Hab is a bounded everywhere defined hermitian operator. If
g,f €D we obtain

(Hf,q9) lim (Habf,g),

a—»—o,
b4

= 1lim (f,Habg) = (f,Hg).
a-r—oo,

b+
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Now we have to show that D is dense in H. Let -w <a <b <+w.

Set A = [a,b]l. Let f €H. First we prove that g =E(A)f is in D.

We have E(A)g = E()) (E(b)-E(a))f and consequently
O, »*<a
BO)g = [ (BQI-B(a))E, ash sb,

(E(b)-E(a))f, » zb.

Tmm for ¢ <a <b <d

d b b
SAAE(M)g = S AdE(MN)E = S AdE(X)g
C a a

+o

S AdE(MN)g,

-0

and Proposition II.6.1 shows that g €D. Since 1lim
a—>r=—oo
b->+co

r

(E(b)-E(a))f

= f it follows that D is dense in H. We will write now D(H) in-

stead of D and so far we know already that H is hermitian. Let

z €T, Im z +0. Let again c <a <b <d. We take a decomposition of

[c,d] of the following form:

(E(uy,q) =BG )b,

C = My <My <eee SMp g T A<,y <eer <HEq 7
b <“H+2 <eee <u'ﬁ+1 = d.
b d 1
Then S (A=z)dE(A) (S e dE(M)h) is the limit of the Riemannian
a c
sums
5 7
Yy (M.-z)(E(., )-EM®.)) [ £ =—(E(u,, .)-E(u.))hl,
3=k j j+1 j =1 uj z j+1 J
T
= Xz

j=1

I

(E(b)-E(a))h, he R,
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provided max. |d.,6.-v.| tends to O. This furnishes
1<5<n j+1 3
<js<n
b +oo 1
J (A=z)dE(A) (S I:EdE(X)h) = (E(b)-E(a))h.
a -0

+oo 1
If feH, g=, —=dE(MX)f we get
—co

A=z
b
S (A-z)dE(X)g = (E(b)-E(a))f,
a
b b
lim J (A-2)dE(A)g = £ = 1lim [/ AdE(A)g~-z(E(b)~-E(a))gl.
a»—-wo, a a2—c, a
b+ b+
b
In particular 1lim J AdE(A)g exists and consequently g €D (H),
a»-«, a
b+
(H-z)g =f. Thus R(H-z) =f, Im z #0, and H is selfadjoint. a]

The theorem to follow is the spectral theorem for selfadjoint

operators.

Theorem II1.6.2: Let H be selfadjoint in H with domain of defi-

nition D(H). Then there is one and only one spectral family
{E(A\) [» €IR} such that

+co
(II.6.1) D(H) = (£|£ €H, /| A°A(E(A)E,£) <+w},

-0

400
(II.6.2) Hf = f/ AdE(M)Ef, £ €D (H).

-0

Proof: Let us take the spectral family {E(X)|[X €IR} from Theo-
rem IT.5.1. Let again
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—o <Cc <a <b <d <+oco,

Let us take a decomposition of [c,d] as in the proof of Theorem

I1I.6.1. Then we get for the Riemannian sums

~ ~

n 1 n ~
(I1.6.3) £ =—(EM. J-EMm.)) [ = (W ,-2)(E@., )-E(u.))f]
5=4 ﬁj z j+1 3 5=k j j+1 |

= (E(b)-E(a))f, £ €H, Im z #0.

Thus
-1 b
(H-z) 'g = E(A)f, A = [a,b]l, g =/ (A-2)dE(M)E,
a

E(A)f € D(H), (H-2)EA)f = g,

b
S (A-z)dE(\)E
a

b
=/ ME(N)f -2E(A) £,
a

HE (A) f-zE(A) £

b
HE(A)Ef = J AMAE(M) £, £ €H.
a

If g €D (H) we obtain

b
I Ad(E(A) £,9),
a

b
= f Kd(f,E()\)g) I 4
a

(HE(A) £,9)

b
(f,/ AdE(N)qg),
a

E(A)Hg = / AE(\)g.

-0
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Let us take A = Al =[-n,+n], n €IN. Since lim E(A_)Hg = Hg we
n-»co n
obtain that

+n
lim / AdE(A)g = Hg.
n-e -n

The general case a —+-», b -»>+w is treated in the same way.
According to Proposition II.6.1 this implies that

to

S ATd(E(X)g,q) < +eo

-0

Let in turn now f €H and
+o0

S OA2A(E(N)E,E) < 4o

-0

As just proved we have then E(An)f €D (H),

+n
HE(An)f = [ AAE(M)E.
-n
+n +oo
Since by Proposition II.6.1 lim S AAE(M)f = / XdE(X)f and
n-ecc =-n -

since E(An)f-ef, n -, the closedness of H implies f €D (H) and

+c0
HEf = / AdE(A)E.

In the last part of the proof we have to show that the spectral
family {E(A)|X €IR} is determined uniquely. Taking again the
Riemannian sums (II.6.3) we obtain
+oo b
A
Ly -z)@E()E = (E(b)-E(a))f,
a

-0
feH, Im z #0.
+o

If £f €D(H), then /' (A-z)dE(M)f exists and

-0
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+co +oo
;9B g - g owith g = 5 (-2)AE(DE,
i.e. g = (H-2)f. In particular
-1 _ ¥ 4EEQ)
= (H-2) g=17/ —)\——z_g'

This formula, however, holds for any spectral family {E() [ eR}
having the properties (I1.6.1), (II.6.2) in the present theorem.

Theorem II.5.1 completes the proof. o
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§ 7. The Spectrum of a
Selfadjoint Operator

We remind the reader to the Definition II.1.1 of the spectrum
of an operator in a Hilbert space. If this operator is selfad-
joint we know already that its spectrum is contained in IR. In
the sequel we want to give a more precise description of the
spectrum S(H) of a selfadjoint operator H in H with domain of
definition D(H). H is assumed to be separable and to have in-

finite dimension. Obv{ome'ly SH) + @

Definition II.7.1: Let H be selfadjoint in H with domain of de-
finition D(H). Let {E(M)|X €IR} the uniquely determined spectral
family which belongs to H according to Theorem II.6.2. Let

A = [a,b] for some a,b with -« <a <b <+w. Then

MWla) = E(A)H = (E(b)-E(a))H

is called the spectral space belonging to A.

T Ach then ¥RUD)C HL).

Theorem II.7.1: Let H be selfadjoint in H with domain of defini-
tion D(H). Let XO € IR. Then Ao €S(H) if and only if

+o > aim I (a) >0

for any A = [a,b] with Xo € (a,b).

Proof: First we assume that +o 2z dim (A) >0 for any A with
O .
Xo €A. Then there is a ¢ € (A) with lloll =1. It is easily seen

that
b
(H-Xo)w = g (X-ko)dE(X)w




g8

(cf. the proof of Theorem II.6.2). If we choose A = [Ao-e,ko+e]
for some € >0, we get

2
H(H—Xo)wﬂ

I
“—

(x—xo)2d<E(x>w,w)

A
o

Thus, for any € >0, there is a ©_ €D(H) with lle_ll =1 and
H(H—Xo)weﬂ < e. The assumption Ao €Z (H) then contradicts Theorem
IT.1.2 and it follows: Ao €S(H). In the second part of the proof

we assume that

dim ([Ao—a,xo+e]) =0

for some € >0. Let £ €D(H). Then

+oo
S (X-AO)dE(X)f,

-0

(H-Ao)f

2 T 2
IFE-ADEIS = 7 (=x ) d(E(M)E,£) .

2
- < < A -—
Let AO € §A1 <x2 Sko+€. Let us assume that [ E( 2)foll
uE(x1)fou2 >0 for some £_ € ¥ . This means that n<E<x2)-E(x1))fou2

> 0 and that g = (E(>\2)—E(_>\1))fo #0. Since g € ([Ao-e,xo+e])

this is a contradiction to our assumption. Thus we have

A ~-€

2 °© 2 teo 2
Il (H-x YEI© = s (A=x )TA(E(N)E,f) +7/ (A=2 )"A(E(M) £, ),
o e o X +e o
o
A —c
O +c0

v

e2(/ AEMEE) +/ dAEMEE)),
—-co >\O+€




2+oo
= ¢ J d(E(M)E,£f),

-0

2l £l 2.

From Theorem II.1.2 it follows that XO €X(H). Our theorem is

proved. u]

Definition II.7.2: Let T be a linear operator in a Hilbert

space fl with domain of definition D(T). A complex number AO

is called eigenvalue of T if there is a ¢ #0, ¢ €D(T), with
= A .
To Ow

The eigenvalues of a selfadjoint operator are characterized

as follows:

Theorem II.7.2: Let H be selfadjoint in H with domain of defi-

nition D(H). All eigenvalues of H are real. Ao IR is an eigen-

value of H if and only if E(.)x is not for every x €H continuous
from the left in XO.

Theorem II.7.2 can be reformulated in the following way. As

it was pointed out in the beginning of § 3, the limit

lim (E(A_E)XIY)I X,y GHI
e-0,
>0

exists. It follows that

lim E(A-€)x, x €H,

e->0 ’

£>0
exists. We call it E(A-0)x. Thus E(A-0) €L(H,H), IIE(A—O)Il2 <1,
EZ(X-O) =E(A-0), and E(A-0) is hermitian. The criterion in Theo-

rem IT.7.2 can now be written as

E(Xo) —E(XO—O) ¥ 0.
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Proof of Theorem II.7.2: Let first E(AO)—E(AO-O) +O0. Then

is an fO €H with

Let €',&"'"" >0. We consider (E(Ao+e')—E(XO—€‘))gO. If 0<§

(E(XO)-E(XO-O))f0 =94 +0.

we have

Thus

(E(XO+8'7—E(XO—€'))(E(Ko+6)—E(XO—6)) =

E(Ko+5) —E(XO—G).

(E(AO+€")—E(>\O—E'))gO

(H-2 ) g

2
Il (u Xo)goH

(E(Ao+8")—E()\O-£'))-lim (E(KO+6)-E(>\O—5))fOp

§-0,
§>0

lim (E(KO+6)—E(>\O—6) ) fo

-0,
§>0

I

Hg

+oo
A=
fw ( KO)dE(K)go,
A +et'!
o
A=A )AE(N)g_,
{ e ( O)d ( )go
o
A 4+t
© 2
= A=A A
i o ( o) d (E( )gorgo)
o
< max(a'z,s"z)ﬂgoﬂz,

there

ge!

[N
: €&
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Since 9% #0 we have shown that Xo is an eigenvalue. Secondly
let us assume that Xo is an eigenvalue of H and that 0, is an
element of D (H) with wo 0, Hwo =Amo. Then
2 T 2
= -2 = -
o0=1(H O)on F O ) TAEM e ,0) .

-—QO

If A = [a,b] is chosen in such a way that Ao €A, then

b 2
0 2z é (A—)\O) d(E(X)(pOI(DO)I
2 b
2 dist (XO,A) gd(E(Mwo’wo)'

. .2 2
dist (AO,A)HE(A)wOM .

Varying A we see that E(X)wo is constant if either A >AO or

. . _ N _ X <) . Si
A <XO. Since lim E(A)wo O we get E( )wo o, < o Since

A-»—co

lim E(X)wo =0 and since E(X)wo is continuous from the right
Ao+oo

we arrive at E(X)wor=wo, A zxo. In particular

E(A)-E(X_-0) * O,
and our theorem is proved.
Theorem II.7.3: Let H be selfadjoint in H with domain of defi-

nition D(H). Let A = [a,b] with -« <a <b <+». Let the dimension

of mn(A) =E(A)H be a finite number, say m with m >0. Then there

are m pairwise orthonormal eigenvectors ©qrec- 9, to H with

Q.
ivi
@reeer®@ span ¥l (A), and for the eigenvalues k1,...,km the
inequality

r 1 £i £m. Moreover, the

eigenvalues X1,...,Xm, i.e. Hmi =A

a <Ai <b, i=1,...,m,

holds.
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Proof: Let f € 83A). Then

b
SAAE(M) £
a

Hf = HE(A)f

E(A)HE

(cf. the proof of Theorem II.6.2). Thus H¥I(A) < Mf(A) and §H(A)

is an "invariant subspace under H". The restriction of H to

BN(A) can thus be considered as a (bounded) linear hermitian

mapping from fﬂ(A) into itself. Consequently IN(a) has an ortho-

normal basis {w1,...,wm} with

le = Xiwi, 1<£i<m,
and real numbers A1,...,Xm. We have
b
(Hwi,wi) = A= é Ad(E(A)wi,wi),
as< A, £ b.
i
Let us assume that one of the numbers K1,...,Xm equals a, say
X1. Then (E(>\1)—E(>\1—O))(,01 = (E(a)-E(a—O))tp1 #0 as was shown

in the second part of the proof of Theorem II.7.2. On the other

hand, since ©0, = (E(b)—E(a))w1, we get
(E(a)-E(a-O))tD1 = 0,

which is a contradiction. The theorem is proved.

In the definition to follow we decompose the spectrum of a

selfadjoint operator.
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Definition II.7.3: Let H be a selfadjoint operator in H with
domain of definition D(H). Let {E(X)|X €IR} be the spectral

family belonging H. A real number Xo belongs to the essential
spectrum S_(H) of H if and only if the subspace ¥}(a) = E(A)fl

o)
has infinite dimension for any compact interval A with Ao €A,

Definition II.7.4: Let H be as in the preceding definition. A

real number Xo belongs to the discrete part Sd(H) of the spec-
trum of H if and only if there is a compact interval A with

o)
XO €A and

0 < dim JfJ(a) < +o,

—_
T2

dinlmn([ko-e,xo+e])

for all € >0 with [xo—e,xo+e] c A.

Definition II.7.£: We say that +« belongs to the essential spec-

trum of a selfadjoint operator H in H as in the preceding defi-

nitions if and only if the spaces

(I-E(N))H, N E€IN,

have infinite dimension. We say that -« belongs to the essen-

tial spectrum of H if and only if the spaces

E(-N)¥ , N€IN

have infinite dimension.

Theorem II.7.1 shows that Sd(H) cS(H). Then

I

S(H) U {tx} (Se(H) U{tw}) usd(H),

@.

Se(H) nsd(H)




M

Theorem II.7.4: Let H be a selfadjoint operator in H with domain

of definition D(H). Let XO €Sd(H). Then Xo is an eigenvalue of

H and an isolated point of S(H), i.e. there is an & >0 such that
[xo—s,ko+s] NsS(H) = {XO}.

Proof: Let A €S_,(H). Set
—_— o d

- _l 1
v=1n LLIKEPS-TEO Y
nzn ,
o
neIN
with n_ sufficiently large. The sequence {dim ([X—%,lo+%])}

assumes the value min{dim‘ﬁﬂ([Ko—%,Xo+%])ln zn )} 21 infinitely

many times. Thus V has finite dimension 2z 1, and in particular

- 21 1
vV = M([xo SA *+21), nzn,.

Consequently there is a 95 €V-{0} and there are fn €EH, n 20,
with

1 1 _
(E(Xo+n) E(>\O n))fn =g , nzn
If €' ,e' >0 we have

e _ —e _1__ _1
(E(A _+€")=E(A _=€")) (B(A +7)-E(A —2)) £

= (E(Xo+€'7—E(XO—€'))gO,

1 1
(E( +2)=E(A ~1)) £

y nzn, (', e").

2

Now it is easily seen as in the proof of Theorem II.7.2 that

HgO = Xogo. Thus Xo is an eigenvalue of H. Let us take the

o
interval A of Definition II.7.4 with XO €EA. We set A = [a,b].




9%

Let u €S(H) n(a,b). As before it is possible to prove that u is
an eigenvalue of H. Evidently © is also an eigenvalue of the
restriction of H to ¥l(A): The latter is an "invariant subspace
under H" as was shown in the proof of Theorem II.7.3. The eigen-
values of this restriction consist of X1,...,Xm and have been
constructed in Theorem II.7.3. Thus fAEE{X1,...,Xm}, a< M <b,

and our theorem is proved. o

The proof of Theorem II.7.4 not only shows that any Ao ESd(H)
is an eigenvalue of H and an isolated point of S(H) but also
that Ao has finite multiplicity, i.e. the vector space V =
{glg €D (H), Hg =A g} is a finite dimensional (and therefore
closed) subspace of H: As in the proof of Theorem II.7.2 we can

show that

E(A)g = g, g E\Af‘,

o
provided Xo is contained in the open kernel A of the compact

interval A. Thus

V cE(A)H.

Next we prove the criterion of H. Weyl concerning the essen-

tial spectrum of H.

Theorem II.7.5: Let H be a selfadjoint operator in H with do-
main of definition D(H). A real number Ao belongs to the essen-
tial spectrum Se(H) of H if and only if there is a sequence

{wi} of elements @, €D (H) with the following properties:




HwiH =1, i €N,
@, =0, 1i->oo,

1

(H—)\o)(pi -0, i -,

9%

Proof: First we assume that KO €Se(H). Set

_ Al 1
.An = [xo n,>\0+n], n €IN.

Then dim Fﬁ(An) =+w, Therefore

©; € W), 1 em,
lo l =1, i e,

((-pil(pk) = O, i *k,

0, =0, 1o 1

Then

+co

2
I (H=2 ) o, -
1

A+
o 1

there is a sequence {wi} with

2
S ) TAE M) e 0,

_ _ 2

A

(H-ko)wi - 0, i = .

1

c.f. the remark after this proof.
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Secondly we assume that the criterion of the present theorem
is fulfilled. If Xo ¢Se(H) then there is an € >0 such that

dim’FM([x -g, A _ +el) < 4o,
o) o
We have

2
H(H—xo)wiﬂ 2

Xo—e , +oo ,
> f (x-xo) d(E(A)@i,wi) +{ (K—ko) d(E(K)wi,wi)
- +€
O
A —-€
2 © +eo
2 €7 (S d(E(X)wi,mi) + s d(E(k)mi,wi))
-co A +e¢
(@]

e2<uE(xo—e)win2 +u<1-E(xo+e))miu2),

2 2 2 2
S(EM -e)e I +llo 1" -IEQ _+e)o 17),

1l

2 (1-(IEG _*e o, I-IEQ —e)o, %)),

2 2
- A +e)-E(A - .
e (1= (E( _+e)-E( _~))o. %)
The operator E(Xo+a)—E(ko-€) is the projection of H onto a
finite dimensional subspace of H and therefore completely con-
tinuous. From wi-AO, i - we thus infer that
(E(>\o+€)-E(>\O-€))tl).l » 0, 1 -,

If i zio we obtain

-\ >
Il (H O)cpill >

NI m

which is a contradiction to our assumption. Our theorem is

proved.
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We want to make a remark concerning the construction of the

orthonormal sequence in the first part of the preceding proof.

(V) _ oy 21, 1 (2) _ a1 1
If we set An = [ o n’ko n+1]' Al = [Xo+n+1'xo+n]' then
_ _ A (1) (2)
An An+1 = An UAn .

We distinguish two cases. First we assume that there is a
.o . 5[1 (1) (2) 0
sequence {nj} of indices with (An ) #{0} or'XX“An ) #{0}.

Then we choose a ® #0 in mﬂ(Aé1)) or in'nﬂ(Aéz)). We can
J J J
assume that “wn  =1. Since ExkAél)) and ﬁﬂ(Aél)) are pairwise
. 3 K
orthogonal if i #1 or j *#k it follows that the ¢ ~are pair-
J

wise orthogonal. Bessel's inequality

2 2
HEl™ 2 | (£, )|
=1 Tny

™8

shows that © -0, j »«=. Secondly we have the possibility that
5

mm;% = mm}f)) = {0}, n zn_.

Then Xm(An ) = 8(a = ... . We choose a complete ortho-
o
normal system in mﬂ(Ano), say {wno,wno+1,...}. Then ©, EﬁﬁkAi),

i =no,no+1,..., and again Bessel's inequality gives wi-*O,

n +1)
o
i >,

Proposition II.7.17: Let H be selfadjoint in H with domains of

definition D(H). Let Xo €IR and let XO be an accumulation point
of S(H). Then A €S (H).
— — o e
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Proof: We choose a sequence {kn} of pairwise distimet numbers

Xn €S(H) with Xn-»XO, n -, To each A_ we assign an interval
o (o} e} _
A =[a_,b ] such that A_ €A_, A_NA_ = @, n +m. Then any inter-
n n’"n n n n m

o
val A = [a,b] with Xo €A contains infinitely many intervals An’

say An ,Anz,... . We have
1

W) o Bl )

1 n

IR=N:

ol

y
with dim Nﬂ(An ) =1,
j
W, ) 1Wlea_ ), 3 +k.
j k

Thus dim‘EM(A) = +oo0,

Proposition II.7.2: Let H be selfadjoint in H with domain of
definition D(H). Let A = [a,b] c£(H). Then

E(b) = E(») = E(a), a <A £b.

Proof: According to Theorem II.7.1 for any A €[a,b] there is an
Ay =[ax,bx] with

>\ E (axlbx) 4

i, = {o}.

Since

[a,b] U (a, ,b,),
>\€[arb] » A

the compactness of [a,b] implies

[a,b] <
J

<

(ay +by ).
1 ]
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Without loss of generality we can assume that a E(ax /b

).
A
Since mmx ) ={0} we have
1

1 1

E(A) = E(a, ) = E(b, ), a, sA <b, .
1 1 1 1
If a <a <b <b we also get
XT Xz A1 Az
E(A) = E(a, ) = E(b, ),
1 1
= E(a, ) = E(b, ), a <A £b, ,
X2 AZ k1 x2
and so on. o

Proposition II.7.3: Let H be a selfadjoint operator in H with

domain of definition D(H). Let Ao € IR be an eigenvalue of H.
Then

{olo €D (H), Ho =X o} = (E(A))-E(X_-0))H.

Proof: The second part of the proof of Theorem II.7.2 shows
that

{olo €D (H), Ho =2 o} = (E(A )-E(X -0))H.

If on the other hand

g = (E(A)-E(r_-0))f,

where f is any element from H, then the first part of the proof

of Theorem II.7.2 yields Hg’=kog. o

Proposition II.7.4: Let ¥ bta bounded hermitian operator in f

with domain of definition D(H) = H. Then H is selfadjoint, and

if
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N >llHl,
then
+N
H =/ AAE(A),
-N

where {E(A)|X €IR} is the accompanying spectral family and where

the integral is taken in L(H,H).

Proof: We have

\3

I (a+r) £l 2 [X[HEl - Nl £,

v

(A =-N) 1 £l

Clearly H is selfadjoint. Thus, by Theorem II.1.2, we see that
{A|A* >N} €X(H). The continuity from the right of E(M)x, x €H,
furnishes, together with Proposition II.7.2, that E(A) =I, XA =N.
Again by Theorem II.1.2 it follows that {A|X <=-N} cZ(H) and, by
Proposition II.7.2, that E(A) =0, *» <-N. Replacing N by N-¢
with N-¢ >llHl and a sufficiently small & >0 the previous argu-
ments show that E(X) =0, A é—(N—g), E(A) =I, A =N-¢. This proves

the proposition in question. o

Now we can characterize compact hermitian operators in terms

of its spectra.

Theorem II.7.6: Let H be an hermitian bounded operator in H with

domain of definition D(H) =H. Then H is compact if and only if

Se(H) = {0}.

Proof: Let us assume that H is compact, let Xo ESe(H) NIR.

According to Theorem II.7.5 there is a sequence {mi} of elements
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of H with ”wiﬂ =1, mi-&o, i -, H(H—Xo)wiﬂ-+0, i »o. Since H is

compact we have HHwiH-+O, i 2., This implies Xo==0. The proof
of Proposition II.7.4 shows that #w €Se(H). Now we assume that
{0} =s_(H). Let N>[HI. Then by Proposition IL.7 1 we have

(IT.7.1) dim I8} (['N'_rll]) < +oo,

(II.7.2) dim'mn([%,N]) <+, n >%, n €IN.

Let us set A; =[—N,%], A; =[%,N]. The representation

+N
Hf = / XdAE(})
-N

from Proposition II.7.4 infers

N N
HE(A')f = f AdE(M)E
n
1/n
_ +
= E (An) HE,
_ -1/n
HE(AT)f = f AAE (V) £
n
-N
= E(A_)HE.
Thus
+ _ 1/n
I (E(A Y+E(A_))HE-HEIl = Il f AdE (M) £ll
n n -1/n
< lien,
n
iii HH—(E(A;)+E(A;))HH = O.

(I1.7.1) and (II.7.2) show that E(A;), E(A;) are compact. Thus
H is compact. Finally S,(H)nR+@. Otherwise dim® <+ .

a
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Corollary to Theorem II.7.6: Let H be a bounded everywhere

defined hermitian operator in H. Let H be compact. Then S (H)

consists of precisely countably many eigenvalues X1, g7 with

Al z0x,l 2. 50
and there is a complete orthonormal system {w1,w2,...,¢1,¢2,...}

in H such that

: = A h = .
H@n nwn, qwn O, n €IN

Here the set {w1,¢2,...} is a complete orthonormal system in the
closed subspace N = {z|Hz =0} of H, provided +w 2dim N > 1. If

dim N =0 then the {®1,w2,...} form a complete orthonormal system
in H.

Proof: Let N >IHll. In [—N,—%], [%,N], mEIN, m >%, there are at
most finitely many points of S(H) (by Proposition II.7.1), say
A1""’Xk . We can order them:

m

[l zlr,l 2. .. zl%kml-

1

It's the same with [-N, m+1]' [ﬁIT’N]' The points of S(H) in

these two intervals then are K1,...,Xk ’Ak +1,...,Xk with
m m m+1

|x1|g[x >]xk[>[x

22 2 k_+1l Z-e- 2l

m m m+1

In this way we proceed. The points A
of S(H). Thus by Proposition II.7.2

1,X2,... are isolated points

AL = AL ’
E( j) E( j+E)

E(A.-0) = E(A.-¢€), j=1,2,...
( 5 ) ( 3 J 12, '




A0%

provided £ is sufficiently small and > O. Since +e« >
dim ([Xj-E,Xj+£]) 21 by Theorem II.7.1 we obtain E(Xj)—E(Xj—O)

# 0. By Theorem II.7.2 it is seen that lj‘is an eigenvalue of H.
The spaces (E(Xj)—E(Xj—O))H are pairwise orthogonal and have

finite dimension. By Proposition II.7.4 there is finite ortho-

(e.)
normal system {®§1),...,mj J} which spans (E(Aj)—E(Xj—O))H

() x o)

and fulfills Hmj = jwj ; B = 1,...,ej. We have

1

m N

Hf = 1im (/ AME(M)E + J AAE(A) L)
1
m

k e
m 3
= lim T A, £ ((EO.)-E(.-0)) £, F)yeM)
Moo j:'] J =1 J J J J
km ej
= 1lim = A, ¥ (f,0M)yefH),
mee j=1 3 u=1 b

Let us change enumeration as follows: Instead of {X1,...,kk ’
m
ka+1,...,ka+1,...} we are going to write {X1,X2,...} and each
Xj appears as often as e. times. Consequently we write {®1,w2,...}
(e;) (e,)
instead of {w§1),...,m1 1 ,wé1),...,w2 2 ;+.+}. Then our last
formula reads

Hf =

™ 8

AL (£,0.)0.
et J( cpj)coj,

Il
™8

Hf,Q.)@..
( ,cpj)toj

Now take a sequence {Hfr} with an-+g, n »w», Set c;n) = (fn,wj).
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Then by Parseval's inequality

2 _
HH(fn—fl)H =

™8

|X.[2|cgn)—cgl)l2.
J

j=1 3 j

(n)

Thus cj -+dj, n »e, Since

2 2 (n);2
IBE 117 2 [x.] lcj | <,

1 J

MR

K €IN, we obtain that

£ a]%a]? < e
5=1 3 j
Setting
9= ¥ rx.d.e
5=1 37373

we thus see that an-+§, n »». Consequently g =§. Since

. d, = lim Ao
373 T e 33

we end up with the expansion

if g is in the closure of R(H) in H.

Finally we choose a complete orthonormal system {¢1,¢2,...} in
the closed subspace N of H. Since for any g € there exist a
z €N and a g €R(H) with g =z+g we have shown that

{w1,w2,...,w1,w2,...} is a complete orthonormal system in H.

So far we have tacitly assumed that +eo 2dim N 21. If dim N =0
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then the {w1,m2,...} already form a complete orthonormal system
in H. o

For the sake of completeness we briefly touch the behaviour
of the spectrum under a compact perturbation of a selfadjoint
operator.

Definition II.7.6: Let A and B be two linear operators in H

with D(A) =D(B). Then the operator B is called compact with re-

spect to A (A-compact) if and only if the following holds: Let
x €0(), k e, llull +lawll <D for

k €IN and some D >O. Then there is a subsequence (u, ) of (uk)
such that 1

(uk),be a sequence with u

lim Buk exists.
1 1

Theorem II.7.7: Let A be selfadjoint in H with domain of defi-

nition D(A). Let B be an hermitian operator in H with D(B) =0(a),

which is A-compact. We define C by setting

Cu = Au +Bu, u€?(a).

Let C be selfadjoint. Then

Se(A) NIR < Se(C) NIR.

Proof: Let XO ESe(A) NIR. According to Theorem II.7.5 there is

a seguence {wk} with

ll(okll =1, k €N,

@y €EP(A), k €IV,




10%

(pk =0, k »,

H(A—Ko)wkH-+O, k >,

Firstly we see that HwkH +HAwkH <D, k €N, for some D >0. Since
B is A-compact there is a subsequence (wk) of (wk) with

J

Bwk +f, j-oeo. Let g €0(A). Then (f,g) = lim (B(pk /9)

J Jooe J
lim (wk (Bg) = 0. This implies f =0. Now
Joee j

chk_—kowk_n < llag =2 o Il +liBoy 1,

J J J J

and the right hand side tends to O if j »w. Thus Ao ESe(C). o

If A is selfadjoint in H and has domain of definition D(A)
and if B is bounded hermitian in H with D(B) =H, then it is
easily seen that the operator C defined by Cu = Au +Bu, u €0D(C) =
D(a), is selfadjoint in H. If V =B is even compact then Theorem
IT.7.7 shows that

Se(A+V) NIR < Se((A+V)-V) NIR,

= Se(A) NIR.
On the other hand
Se(A) NIR < Se(A+V) nir,
where we have used again Theorem II.7.7. Thus we end up with

(IT.7.3) Se(A+V) NIR = Se(A) nIr

for compact V.

We now consider selfadjoint operators having a discrete

spectrum. This notion is made more precise in
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Definition II.7.F: Let A be selfadjoint in H with domain of

definition D(A). A is said to have a discrete spectrum if and

only if for any compact interval A = [a,bl the inequality

dim $A) <+

holds.

Selfadjoint operators with discrete spectrum could be charac-

terized in the following way:

Theorem II.7.8: Let A be selfadjoint in H with domain of defini-

tion D(A). A has discrete spectrum if and only if Se(AJ c{-o,+x},

Moreover A has discrete spectrum if and only if S(A) consists

of countably many eigenvalues k1,X2,... with

(Al =il <o, Lim A ] =+e,
n-co

1 = dim((E(Xj)-E(Xj-O)) ) =:e. <+oo,

Moreover, then there is an orthonormal system {w1,m2,...} of ele-
ments ©, €D (A) such that Awk =kak, k €IN, and such that the

following expansion holds:

Af =

™8

k=1

Proof: Let A have discrete spectrum. We consider the intervals
Aq==[n,n+1], n €7 . As was pointed out in the proof of Theorem

II.7.4 the intersection of S(A) with (n,n+1] consists of at most

(n) (n) _ . . (n), _
1 ,...,an with 1 £ dim ((E(Xj )

E(Xén)—o))H) <+, j =1,...,kn. We can order them as described

in the theorem in question and get that S(A) consists of at

finitely many eigenvalues A

most countably many eigenvalues A ,A,,... with [X1[ §|X21 Seee .

1!
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Now let us assume that S(A) is bounded, say S(A) c[-M+g,M-¢]
for some € >0. Then
+M

Af =/ AdE(A)E.
-M

[-M+e,M-€] NS(A) contains at most finitely many pairwise distinct
eigenvalues, say A1”"’XN’ with 1 §e1,...,eN <+, Otherwise
[-M+e,M-¢] would contain an accumulation point of eigenvalues.
By Proposition II.7.1 this is a point of Se(A) and by Definition
II.7.5 this contradicts our assumption that A has discrete spec-
trum. As in the proof of the Corollary to Theorem II.7.6 we ob-

tain the expansion

N K ), (1)
k=1 p=1
(1) (ey)
where the wk ,...,wk are an orthonormal basis of (E(Kk)—

E(Ak-o))H. In particular A admits a bounded hermitian extension
to H and the range of this extension is contained in the finite

éu). Since A is self-

dimensional subspace being spanned by the o
adjoint this extension coincides with A (cf. Proposition I.3.5)
and moreover A is compact. Thus O ESe(A). This contradicts our

assumption. Thus S(A) is unbounded and lim [an = +w, From the
n->co
second criterion it immediately follows that Se(AJ < {~w,+o}.

From this inclusion we get in turn that A has discrete spectrum.

As for the expansion we have

M
Af = lim / *AE(M) £,
Moo -M
e
N k
= lin I A 3 (f,wé“))méu).
Noreo k=1 p=1

If in the sequence {K1,X2,...} each eigenvalue is as often re-
peated as its multiplicity ej prescribes we get the expansion
of the theorem. o
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Theorem II.7.9 (Rellich, Friedrichs): Let A be selfadjoint in #H

with domain of definition D(A). A has discrete spectrum if and

only if each sequence ($k) with

®,_€D(A), k €N,

Hﬁkﬂz +HA$kH2 §D2 for some D >0 and all k € IN

contains a convergent subsequence.

Proof: Let A have a discrete spectrum. We take the expansion in

Theorem II.7.8 and set

X, = (x,wk), x EH.

k

Then, if x €D(A), we get

2 2 2
xklxkl = [[axll =,

™M 8

k=1

[xk[2 < xll 2.

M8

k=1

If (x(p)) is a sequence with the properties stated in the theo-

rem we thus get

(I1.7.4) x (1+>\2)[x(p)|2 < D2, p €EIN;
— k k
k=1
in particular ”§(p)”2 §D2 for some D >0, where we have set
20 - T
k=1
N(pj) ~(p)
Thus there is a subsequence (x ) of (£'P’) such that
o (pj)_ © _
I X y, » I x*y
k=1 k k k=1 ktk
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if j »e; here {y1,y2,...} is any sequence of complex numbers
with

2
l

ka < 4o,

[

k=1

and {x*,x¥,...} is some sequence of complex numbers with
1772

nm™3g

|x]? < oo

k=1

(cf. the example after Proposition I.3.1). In particular

(p.)
% d sxx

X r J 2. We set

x*¥ = ¥ x*o
k=1 X K

and obtain

(p.) N (p.) o
1% 3 xx? s 5 kg doexxP 2 oz |xp|? s
k=1 k=N+1
o (p.)
+2 ka J [2.
k=N+1
From (II.7.4) we infer
ol (ps) 2
z ka ] 12 < D2 .
k=N+1 (E2S

If € is any positive number we see now with the aid of Theorem
IT.7.8 that
o (

2
2z (|x*|“+|x
k=N+1 = % k

)
1712 <

if for N is chosen some fixed integer N(¢). Taking j sufficient-
ly large we get




M2

Finally we show that §(p) =x(p). It is left to the reader to
show that A has discrete spectrum if and only if A+YI has dis-
crete spectrum for any Y €IR. In the latter case S(A)+y:=

{A+Y|X €S(A)} coincides with S(A+YI). According to Theorem II.7.8
we can choose a Y €IR such that -y €X(A), i.e. A+yI admits a
bounded everywhere defined inverse. Let x €D(A), set

N

X = X X,0

k=1 KK

Then by Theorem II.7.8

vy _ N
(A+v)x = X (A, +Y)xX, 0, » (A+Y)X, N -»>o,
- k k7k
k=1
Since also x(N)-»§, N -, with
X= I x¢
k=1 k¥k
the closedness of A implies (A+YI)x = (A+YI)X. Therefore x =%

and the first direction of our proof is finished. As for the se-
cond one assume that the criterion of our theorem holds. If A
does not have a discrete spectrum then there is a compact inter-
val A = [a,b] such that dim YJ}(A) =+w. Let (@k) be an infinite
orthonormal system in J§fl(4). E(A) commuting with A we have

b

randaEme, ),
a

1l

2 2
HwkH +HAwkH

< sup (1+A2)HwkH2,
AEA

£ sup (1+A2).
AEA

Therefore there is a subsequence (@k) of (wk) which is conver-
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gent. Since by Parseval's inequality

Iyl? 2 = [(o,y) % v eH,

™8

k=1

we can conclude that mk -0, Jj -»w. Thus wk -0, j 2w which is a

J J
contradiction. Our theorem is proved. a

For later use we give the following definition:

Definition II.7.7: Let A be a linear operator in a Hilbert space

H with domain of definition D(A). A is said to be bounded from

below if and only if there is some Y €IR with

(Au,u) = vlull?, uen(a).

Problem ITI.7.1: Let A be selfadjoint and bounded from below.

Prove: If it is possible to select from every sequence {$k} with

Ig I <D,
(A$k,€6k) <D,

for every k €IN and some D >0, a convergent subsequence then A

has a discrete spectrum.

Problem II.7.2: Let A be selfadjoint and bounded from below. Let

A have a discrete spectrum. Assume that Yy 20 in Definition II.7.7.

Prove: If one takes the expansion in Theorem II.7.8 then Ak z0,

2
(A-Xlx) )\kIXkI ’

™8

k=1




A

™

Il
™8

e

®
k=1 k'k

(for the notations cf. the proof of Theorem II.7.9).

Problem II.7.3: Under the assumptions of Problem II.7.2 prove
Ny
that every seguence (¢k) having the properties stated in Problem

IT.7.1 contains a convergent subsequence.

Problem II.7.4: Remove the assumption Y 20 in Problem II.7. 3.
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§ 8. Functions of a Selfadjoint Operator.
The Heinz- Wato Inequality

In this paragraph H is a separable Hilbert space; A is a
selfadjoint operator in H with domain of definition D(A) and
{E(M) |2 €IR} is the spectral family which belongs to A. Then
the following proposition holds:

Proposition IT.8.1: Let u:IR »IR be continuous. Let f €. Then

b +o0
lim S u(MAE(A) L =:/ u(AM)AE(A)E
a»-w, a -

b+

exists if and only if

b 2 oo 2
lim [ ju(A)|“a(E( )E,f) =:7 |u(r)|“A(E(\) £, £)
a—»—w, a -0
> +eo
exists.

Proof: The proof is the same as that of Proposition II.6.1 but
with A replaced by u()) and with 22 replaced by [u(k)l2 =u2(X). o

It is our aim to define the notion of a function u of a self-

adjoint operator. This is done in the theorem to follow:

Theorem II.8.1: Let u:IR » IR be continuous. Let

+co
D(u(A)) = (£]£ €N,/ |ur)|2d(E(N)E,£) <+ol.

-0

Then D(u(A)) is a dense linear subspace of H. The operator u(a),
defined by
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b
u(A)f = 1lim S u(A)AE(M)E, £ €D(u(r))
a»-w, a

bo+oo

is selfadjoint.

Proof: The proof is carried through as that of Theorem II.6.1.

Again one has to replace » by u(i). a

Up to now we have only considered realvalued functions. For

a complex valued function w:IR - T being continuocus we define

u(Xr) Re w(Ar),

v(A) Im w(r), » €IR,

D(w(A)) = D(u(ap)) nD(v(a))

w(A)f = u(A)f +iv(A)E, £ €D (w(dp)).

I

This means that

+-c0
Dw(a)) = {£|£€H, s [u)[2a@EWE, £ +

(==}

+co 2
+ J v | “a®ENE,£) <=},

Since Iu(k)[2 +[v(>\)|2 = uZ(X)-+V2(X) = [w(k)[2 we see that
D(w(A)) = D(|w| (A)). Therefore D(w(A)) is dense in H

W= W AEDN, Fe dtu(A) = diwl(AY.

-®
Proposition II.8.2: Let w:IR -»CT be continuous, let u(A) = Re w(A),
v(A) = Im()), X €IR. Then
b +co
lim S wA)A(E(A) f,g9) =:/ w(M)A(E(M)E,q)
a—=-o, a -Co

b+

exists and




1%

+co
(w(a)£,9) =/ w(r)d(E(A)E,g9), £ €D(w(n)), g€etH,

=00

2 Tt 2 |
lw(a)£ll© = 5 |[w(x)|“d(BE(X)E,£), £ €ED(W(A)).
b —-co b 1+
I lm S wDEMF exists then f€ Jw(A)), w(A)§=Tim §windELDE = § wAAEWS.
_‘;;gg a - ay-w, a -0
—_— b
Proof: T T— o
- <Cc <a <b <d <+«w. Then
b d
|/ w(Md(E(A) £,9) -/ w(M)A(E(M) £,q9)],
a C
a d
s I/ wMAEMRE,9) + 17 wR)AEME,q)].
o] b

Taking the Riemannian sums Tnf as in the proof of Theorem II.2.1
we get
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. k
2 | B (n) (n) (n)
| (T £,9)|° = li; w(A ) (B8 E,EM )9 |,
k .
clgl?] 5 (we ™y 2 @™ £) |
2 = g l=1 l i 4 I

| SwDAENK Q)] <

<

2 @ 2
< ligll cf lw(r) | “a(E() £, £),

a
if we concentrate on the integral / w(A)d(E(r)f,g). The second
c
one is treated analogously. This immediately infers the existence

of

+oo b
S w(A)d(E(A)£,9) = lim S wA)A(E(M) £,q9)
-C0 a—»—o, a

b+

provided f €D(w(A)), g €H.

This  gives

+oo a
S w(M)A(E(M)f,g) = 1lim / w(M)d(E(M)£,9 )
—o a-mho, b

by=o0

= (w(a)f,9),

f eD(w(n)), g €fl. Since

2 b b
Ilw@)fll® = 1im (f w(MAE)E, S w(A)AE(A) L)
a»-o, a a
b+

and since
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b
17 w)aE(M) 1% = lim (T £,T_£),
a n-»co

k
n |
=1n (w0 [2Ee™)E,n,

n-eoo i=1

b
= 7w [2a(EME,£), £ED(wA)),
d

the last but gne assetion of the present  Proposition readily follows.
Assume that

b
w(A)f = 1lim S w(A)AE(A) £
a-»-co, a

b->+co
exists. The preceding calcylations show the last assertion.

Our next aim is derive rules for the addition and multiplica-
tion of operator valued functions. If T1,T2 are any two operators
in H with domains of definition D(T1), D(Tz) then we define

(T,+T))x = T,x +T,%, x €D(T1+T2)§= D(T,) ND(T,),

1 1 2

(T;Ty)x = T, (T,x), x €D(T,T,):= {yly €D(T,),T,y €D(T,) .

Now the following theorem holds:

Theorem II.8.2: Let A be selfadjoint in H with domain of defini-

tion D(A). Let wi:IR-+E be continuous functions, i =1,2. Then

(w1+w2) (A) o w, (A) +w,(B),

(wywy) (A) 2 w, (A)w, (A).
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More precisely, w1(A)w2(A) is the restriction of (w1w2)(A) to
D(wZ(A)) nD((w1w2)(A)). We have

(w,w,) (B) = w, (B)w, ()

if and only if D(wz(A)) DD((w1w2)(A)). Moreover

D(w1(A)+W2(A)) D((W1+W2)(A)) ﬂD(w1(A)),

= D((w,+w,) (A)) ND(w,(A)).
1 72 2 \

We have
W, (p) +w2(A) = (w1+w2) (8)

if and only if

D((wy+w,) (B)) =D(w, (A)) or

D((w1+w2)(A))c:D(w2(A)).

Proof: If £ €D (w,(A)) ND(w,(A)) then by Prepsition II.8.2

b
lim ! (w1(>\)+w2(>\))dE(>\)f
a—>_°°, a
b+

(w1(A)+w2(A))f

+oo
= I (W, (M4, (A))EEO) £ = (W, +w, (A

-0

Thus the S}ﬂhst\ assertion is proved . 1

+co
Py O, ) [Pa @O £, £) <,
+oo 2

(II.8.3) s [w1(>\)[ d(E(M)£,£) <o,

=-co
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+o0
then Jf (|w1(X)[2+[w2(K)[2)d(E(X)f,f) <, The same conclusion

{oo]

+oo
holds if (II.8.3) is replaced by / |w,(\)|?d(E(\)f,f) <w. Thus

D((w1+w2)(A)) nD(wi(A)) c D(w1(A)+w2(A)),

i =1,2. The inclusion the other way 1ound is alsp trivial. The last
assertion is trivial. Let now be £ €D(w2(A)). As in the proof
of Theorem I1I.6.2 one shows that E(X)w2(A)f = w2(A)E(X)f; in
particular we have E(X)D(WZ(A)) CD(wz(A)). Thus

IIE(X)WZ(A)fIIZ Ilwz(A)EU\)fllz

+c
£ ey () [ 2a @) EG) EQOEEQS)

where the last equation is an immediate consequence of the cal-
culations in the end of the proof of Proposition II.8.2. Since
E(MEM®)f = E(AM)f, 2 su,=E(w)f, » >u, we end with

2 2
IE(M)w, (A EIT =/ [wz(u)l d(E()f,£).

-=Q0

If w2(A)f €D(w1(A)) then

+co
o > 7wy () [P w, (B)E,wy (B)£)

-0

| e 2 2

= J |w1(>\)l dllE(X)wz(A)fll
+oo 2

=/ |w (M) [%ac()

-0

A
IIE(K)WZ(A)fII2 = f lwz(u)lzd(E(u)f,f). Next we show

-0

with G(A)

that
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b 5 b 5
J |w1(X)[ dG(r) = J lw1(k)w2(k){ d(E(M\) £, f).
a a

The proof is similar to that of Proposition II.5.1. We have

(a,=)\‘I <)\2<,,, <)\n+1 =Dh)
n
| w, 01260, =G () |
= 1 j+1 3
n 2 Xj+1 >
= = |w 0| % 7 [w, (0) | “a(E (1) £, £)
- J 2
=1 AL
J
- v, o) [P Jw, () [2 (B, ) =E()) ) +
=1 13 23 j+1 3 !
AL
n 2 J+1 2 2
+ = |w, (A |“ s (Jw, (u) [ “=|w, (A.)]|“)-d(B(n)£,£).
. 1" 3] 2 2 3
]—,1 AL
J
If max |A A.| is sufficiently small the last sum can be made

1£j2n I+ ]
arbitrarily small, whereas the first sum converges to

b 2
Solw (Mw, (M) [Fa(EM) £, £) .
a

Letting a tend to -«», b to +x, we see that D(w1(A)w2(A)) c
D((w1w2)(A)). If on the other hand f € D(wz(A)) nD((w1w2)(A))
then the preceding calculations show that wz(A)f ED(w1(A)). Con-
sequently

D(w, (B)) ND(ww,(a)) < D(w1(A)w2(A))

< D (w,(B)) ND((w,w,) (A)).

Therefore the equality sign holds. It is also clear now that
D(w1w2(A)) = D(w1(A)w2(A)) if and only if D(wz(A)) DD((w1w2)(A)).
The reader may verify by himself that
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A
E(X)WZ(A)f = [/ wz(u)dE(u)f,

(o]

b b :
S w1(k)dE(X)w2(A)f = J w1(X)w2(X)dE(X)f,
a a

£ €ED(w,(A)),

and consequently

(w1w2)(A)f = w1(A)w2(A)f,

f €D(w1(A)w2(A)). Our Theorem is proved. o

We draw some consequences of Theorem II.8.2. Let n €IN. Set

wy(\) =wl (). If £ €D((ww,) (&) =D(w} ' (A)) then
+co
oo lw )]

-0

2tV G (B E,£) < +oo.

Taking a Riemannian sum we obtain by applying H&lder's inequality

? | w (X-)lzn(E(Agm))f £)
i=1 1) j '
2
s (m) 2(n+1)
< (£ (E(A;)E,£)) .
i=1 J
m 2n
(= |w1(x.)|2(n+”(E(A§m))f'f))2(n+1),
i=1 J J
-0 < a -—-)\1 <>\2 < vooe <>\m+1 =b <+°°’ Aj(m) =[)\J’>\J+1]. Thls gives
; 2n E%T b 2(n+1)
sl [TPaEOEE) s TEITT (s [y )]
a a
2n
2(n+1)

d(E(M)£,£))
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By letting a tend to -« and b to +x we see that f €D(w2(A)).

Application of Theorem II.8.2 infers w?+1(A) = w1(A)w?(A); more
generally it is implied by this that ‘

(I1.8.4) w™(a) = (w(a))™.

This relation also holds for negative integer exponents. It is

sufficient to show this for n=-1. We assume that

w(r) #0, X €IR.

Then w_1(k)w(k) =1, X €IR, and w_1(A)w(A) is the restriction of
the identity to D(w(A)); w(A)w-1(A) is the restriction of the
identity to D(w_1(A)). This precisely means that w(A) has an
inverse, and
-1 -1

(IT.8.5) (w(A)) =w (A).
The following is evident: If w is bounded, say |w(})| €M, X €IR,
then

w(A) EL(H,H),

(II.8.6)
lwa)ll sMm.

Now we study the adjoint of w(A). Our result is

Theorem II.8.3: Let w:IR » T be continuous. Then

(II.8.7) (W(A))* = w(A), w(A) = (W(A))*.

In particular w(A) is closed. Here w(A) denotes the operator

corresponding to the function w defined by w(}) =w(r), A €IR.
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Proof: We set
w(r) = r(M)w(r), \ €IR,

with r(A) =|w(A)l#f and [w(X)| =1. Then

D(w(h))

1l

D(r(a)),

w(A) = r(a)w(a)= W)= [FNA)=wAr(A)

by Theorem II.8.2. r(A) is selfadjoint in H with domain of defi-
nition D(w(A)). w(A) is in L(H,H) by (II.8.6). It is easy to

see that
(W(a))* = VN:(A)
if we write
W(A) = (Re W) (A) +i(Im W) (&),

where (Re w) (A), (Im w) (A) are bounded selfadjoint operators in
H with domain of definition H. We have

(W(A))* < r(A)W(A) < w(a).

Again by Theorem II.8.2 we conclude w(A) =r(A)W(A). Let
f €D(w(A)), g €D(w(A)). Then it follows

(g,r (A W(A)E),

(W(A)r(Aa)g, f)

w(A)

tn

(w(R))*. 0
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|

We employ Thesrew 1.8.3. Since by .
(IT.8.7) it follows that (w(A))* =w(A) we obtain the closedness
of w(A) with the aid of Theorem I.1.2. o

Now we deal with a case which occurs frequently in the appli-

cations; namely we assume that A is bounded from below.

Theorem II.8.4: Let A be a selfadjoint operator in H with domain
of definition D(A). Let

(Au,u) 2 vllull?, ueD(a),

for some vy €IR. Let w:IR »T be any continuous function. Then

b
w(A)f = lim S w(A)dE(M)E,
a—»—wo, a
bo+eo
+co
= J w(A)dAE(M)E,
b
WA)E-w(Y)E(Y)E = 1lim S w{(Xx)dAE(A)£,
bo+eo ¥
+o0
=:/ w(M)AE(A)E, £ €D(w(A)).
Y

In particular, if w:[y,+«) »T is any continuous function which

is continued anyhow to a continuous function w:IR - T, then

~ +w -~
w(A)E = 5 w(A)dE(XA) £,
+o0
=/ w(A)AE(A)Ef +w(Y)E(Y) £,
Y
=:w(A)f,
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~ +co N
£ED(w(A)) = {E|£ €H, S |w(r)|2A(B(\)E,£) <40} =

+oco

= {f|f €H, S ]w(k)lzd(E(A)f,f) <+w}. The latter space is de-
y=0 +oo
noted by D(w(A)). The value of / |w(})|2a(E(A\)£,£) =
b Y"'O
= lim 7/ |w(K)[2d(E(X)f,f) does not depend on the continua-
&0, Y-¢€
b+
tion w of w and is precisely lw(Y)iZIIE(Y)fII2 +
+oco ‘
I ~[w(X)12d(E(X)f,f). In particular
Y
2 _ Tt 2
lw(n)£l© = s [w(x) | “a(E(M) £,£),
Y-O
+oo 2
D(w(n)) = {f|f€H, s |wA)|“A(E(\)E,f) <+}.
0

Proof: If 6 €IR, 6 <y, then
((a=8)u,u) = (y=6)llull?, ueDn(a).

Since y-6 >0 we get

IV

I (a-8)ull 2 (y=¢S)llull, u€eD(an).

Theorem II.1.2 shows that ¢ €X(A). By Proposition II.7.2 the
operators E(A) are constant for A <y, i.e. E(\X) =0, X <y. Let

- <a <Y <b <+w. Consider a partition a=iA_, <A, <... <Ai =

1 %2
=y <>\i+1 <... <Xn+1 = b. Then
gl (n) n (n)
S w(ADEW@IY)E = wh, _DE(VE + T w(r.)E(ATHE,
j=1 J ] i-1 =% 3 j
(n) _ X
Aj [ jl j+1]-
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b
Letting max lk.+1—k.| tend to O we get [/ w(A)AE(M)f =
1<jsn J J a

b

S wAMAE(M) f +w(Y)E(Y)f. Now the first and the second assertion
Y

of the present theorem easily follow. As for the third one we get
(with the same notations as before)

n
s jwr) [2@Ee™he, f) =
j=1 J J
.
= w2 EMED + 2w 2@l 6.
i-1 j=4 3 3
As before we obtain
bo. 2 2 2 b 2
S o lw(X) | “a(E(N) E,£) = IW(W)I IE(Y)EII® +5 [w(x)|“A(E(X\)f,f).
a y
b . R b ,
Since [ |w(A) | “a(BM)E,£f) = 7 [wA)|“d(EM)E,£) +
y-e Y

Y ~ 2 2 2 2

+ 7 (Jw) | = w () [ DAEME,E) + |[wY)|IE(VEN®, >0, we
Y—¢&

arrive at

+oco - 9 +co 2
S lwM) [ CAEM)E, ) = |w(r) | “d(E(M) £, £),

and this relation holds in the following sense: If the left hand
side is finite then the right hand side; moreover its value is

+oo

I lw) [PAEM) £, £) + w(v) | 2IE () £l 2
Y

and thus does not depend on the continuation w under considera-
tion. If the right hand side is finite, i.e. if

boa
lim s [w(A) | “a(E(N) £, £)
€0, Y—-¢

b+
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exists for some continuous continuation w of w then it exists

for any, and its value is precisely

teo . 2 teo . 2 2 2
S lw) |CAEMIE,E) = |wM)[AEM)E,E) +w(y) [THEM) I .

Our theorem is proved. o

If vy 20 we can thus define

A%f = 7 A%aE(M\) £, Re o >0

e O- 8

£eva®) = (F|Te , r 2% R AEmMED <«
0
(observe that w(0) =0 if w(A) =Xa, A 20). Applying HOlder's
inequality to Riemannian sums as we did right after the proof

of Theorem II.8.2 we get
Q By .
D(A') o D(A") if Re B 2 Re @ >0.

Theorem II.8.2 then furnishes

o B

a*aPf = +8

o+
A B

£, £€D@"""), Re @, Re B > O.

If Yy >0 we can go further. Then
63 teo (¢4 o
Af=/ XdiE(A)f, Re « 20, £€D(Ar ),
Y ]
for any y' with O <y' <y. Correspondingly D(Aa) is precisely the
set of those f € for which
+co

S
y!

2|2 R Y4(BE(A\)E,£) <.

From what was written before it is clear that the values of the
preceding integrals do not depend on Y'. a” admits a bounded

inverse
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+oo
ATVE = 5 ATYaB(ME, £ €H,
Yl

and it holds

B a+g

a"afe = 2% %, repay,

Yy =max(Re &, Re B, Re(o+B)).

Next we want to compare the fractional powers of any two
selfadjoint operators which are bounded from below with some
Y >0 and have identical domain of definition. This result is
due to E. Heinz [ H ]; we prefer to give a more general version
(in view of our applications to the Navier-Stokes equations);
this is due to Kato [ K.

Definition IT.8.1: Let A be a selfadjoint operator in a Hilbert

space H with domain of definition D(A). Let A be bounded from

below with (Au,u) ;YHuHZ, u €D(a), for some v >0. Then A is
called strictly positive (or z vy >0). If (Au,u) >0, uevD(a),

u 0, then A is called positive ( >0). If (Au,u) 20, then A is

called nonnegative (or A 20).

Theorem II.8.5: Let H1,H2 be two Hilbert spaces and let A and B

be selfadjoint nonnegative operators in H1 and H2 respectively
with domains of definition D(A) and D(B). Let T be a bounded

operator from H1 into H2 which maps D(A) into D(B). Assume that
there exists a number M such that

[BTull sMllaull, ueD(an).

Then, for each o satisfying O <a <1, the image of D(Aa) under T
is included in D(Ba) and, if B gyz >0, A.;Y1 >0,
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1B%rul < Ml '~ %a%ul, uena®);

<
otherwise
iB%tall s eelim) ir V4%l
uen(at).

Proof: First we assume that A,B are strictly positive. Let

u éD(Aa) and v €D(B). The Hilbert space valued function z-»Azu,
u ED(AQ), is holomorphic in Re z <0 (i.e. complex differentiable
with respect to the norm of H, cf. 0.2), and continuous in

¢}
Re z <4. z B 2v is certainly holomorphic in a-1 <Re z <o and

continuous in ¢-1 sRe z £0. Hence the function f defined by

f(z) = (TAzu,Ba_zv)

is holomorphic in @-1 <Re 2z <a and continuous in ¢-1 <Re z £a,
: o-1+i
Now we estimate |f| on Re z = a-1 and Re z = o. Since A ! Yy =

A" 1a% 1Yy €p(a) if v €R we have TA" 7Yy €0 (B) and

| £ (a=1+1iy) |

I
[
>

| (BTa”” Yy, BiYy) |,

1eTa% " VY B Yy

A

< Mia* T ys Yl < i a®ullll vl

by our assumption, Theorem II.8.2 and (II.8.6). Similarly

| £ (o+iy) | l(TAa+iyu,Biyv)|,

" .
lra " tYuiist¥vl,

A

Izl Al vl -

A
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Hence, by the three-lines theorem in the theory of functions,

we get

| (Tu,B V)| = |£(0)],

o

{sup If(a-1+iy)|}a-{sup If(a+iy)|}1— ,
yeIR yEIR

A

M T Al vl .

A

Thus we have shown that Tu €D(Ba) and, that the estimate in
question holds. If A,B are merely nonnegative, then we consider
B+e 2e >0, A+e z2e >0, We have

Il (B+e)Tull z IBTull - e<liTiliul,
[ (B+e)Tull < (IBTull +elfTNul,
< MlAaull +ellTlul,

A

Ml (A+e)ull + el Tl all,

IA

i (B+e)Tull < (M+ITI)I (A+e)ull,

where we have used our assumption and the inequalities

IA

ellull < I (a+e)ull,

IA

laul < Il (A+e)ull.
Consequently TD((A+a)a) cD((B+e)a),
I (B+e) *mall < el *Hrl 70 (ate) Cull

o
Since D((B+e) ) = D(BY), D((a+e)¥) = D(A%) we can let € tend to
and arrive at the result desired in the cases A £Y1 >0, B zyz >0;
A,B nonnegative but not strictly positive. It is clear that all

possible cases are covered by the preceding calculations. o
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Corollary to Theorem II.8.5: Let A,b be nonnegative selfadjoint
operators in a Hilbert space H with domains of definition D(a),
D{(B). Suppose D(A) cD(B). For all « € (0,1), we have D(A@) cD(Ba).
If in addition, there is a certain number M such that [IBull <MlAaul,
u€v(p), then, if Bzv, >0, Az\(1 >0,

2
18%ul s M*1a%ull, uen@a®);
otherwise
18%ul < (me)1a%ull, uwena™.
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