Vorlesung "Funktionalanalysis II " (Functional Analysis II)

I. Unbounded Operators in Hilbert Spaces. General Theory

§1. Closed Operators	1
§2. The Graph of a Linear Operator	7
§3. Hermitian Operators	12
II. Spectral Theory of Selfadjoint Operators	
§1. The Resolvent of Selfadjoint Operators	24
§2. Spectral Families	30
§3. Stieltjes's Inversion Formula. Further Properties of Functions of Bounded Variation	45
§4. Integral Representation of the Resolvent	61
§5. Fundamental Properties of the Funktion $\rho(.;f,g)$	69
§6. The Spectral Theorem for Selfadjoint Operators	79
§7. The Spectrum of a Selfadjoint Operator	87
§8. Functions of a Selfadjoint Operator. The Heinz-Kato Inequality	115
References	133

I. Unbounded Operators in Hilbert Spaces. General Theory

§ 1. Closed Operators

Definition I.1.1: Let T be a linear operator in a Hilbert space \mathcal{H} with domain of definition $\mathcal{D}(T)$. T is called closed if and only if the following implication is valid: Let $\{f_n\}$ be a sequence in \mathcal{H} with

$$f_n \rightarrow f$$
, $n = 1, 2, ...$,
 $f_n \in \mathcal{D}(T)$,
 $Tf_n \rightarrow g$, $n = 1, 2, ...$.

Then $f \in \mathcal{D}(T)$ and g = Tf.

Of course every bounded operator $\widetilde{\mathbf{T}}$ with $\mathcal{D}(\widetilde{\mathbf{T}}) = \mathcal{H}$ is closed. If \mathbf{T} is a linear operator in \mathcal{H} with domain of definition $\mathcal{D}(\mathbf{T})$ and if $\widetilde{\mathbf{T}} \in L(\mathcal{H},\mathcal{H})$, we set

$$\mathcal{D}(T+\widetilde{T}) = \mathcal{D}(T),$$

$$(T+\widetilde{T})u = Tu + \widetilde{T}u, u \in \mathcal{D}(T).$$

If $\widetilde{T}=cI$, $c\in \mathbb{C}$, we often write cu instead of $\widetilde{T}u=cIu$ and (T+c)u instead of (T+cI)u.

Definition I.1.2: Let T_1 be a linear operator in a Hilbert space H with domain of definition $\mathcal{D}(T_1)$. Let T_2 be a second linear operator in H with domain of definition $\mathcal{D}(T_2)$. Let

$$\mathcal{D}(\mathbf{T}_1) \subseteq \mathcal{D}(\mathbf{T}_2)$$
,

$$T_1 x = T_2 x$$
, $x \in \mathcal{D}(T_1)$.

Then T₂ is called a continuation of T₁.

We now pose the question, under which conditions on T_1 it is possible to construct a closed continuation of T_1 . If T_2 is such a closed continuation, then the following implication holds: Let $f_n \to 0$, $n = 1, 2, \ldots, T_1 f_n \to g$, then $g = T_1 O = 0$. In other words: $\|f_n\| \to 0$, $f_n \in \mathcal{D}(T_1)$, $\|T_1(f_n - f_m)\| \to 0$, $n, m \to \infty$ implies $\|T_1 f_n\| \to 0$.

Definition I.1.3: A linear operator T with domain of definition $\mathcal{D}(T)$ is called closeable if and only if the following implication holds: If for a sequence $\{f_n\}$ with $f_n \in \mathcal{D}(T)$ the $\{Tf_n\}$ are a Cauchy sequence and if $f_n \to 0$, $n = 1, 2, \ldots$, then $Tf_n \to 0$.

Theorem I.1.1: Let T_1 be a linear operator with domain of definition $\mathcal{D}(T_1)$. Then T_1 has a closed continuation T_2 if and only if T_1 is closeable. If T_1 is closeable then there is a smallest closed continuation T_1 . This means that T_1 has the following properties:

- 1. \overline{T}_1 is a continuation of T_1 .
- 2. Any closed continuation T_2 of T_1 is a continuation of \overline{T}_1 .

 \overline{T}_1 is called the closure of T_1 .

<u>Proof:</u> From what was said before Definition I.1.3 it is evident that our condition is necessary. Now we assume that T_1 is closeable. We set

$$\begin{array}{ll} \mathcal{D}\left(\overline{T}_{1}\right) = \{f \mid f \in \mathcal{H}, \text{ there exists a sequence } \{f_{n}\} \text{ with } \\ & f_{n} \in \mathcal{D}\left(T_{1}\right), \ f_{n} \rightarrow f, \ n = 1, 2, \ldots, \text{ and } \\ & \|T_{1}\left(f_{n} - f_{m}\right)\| \rightarrow 0, \ n, m \rightarrow \infty\}. \end{array}$$

It is clear that $\mathcal{D}\left(\overline{\mathbf{T}}_{1}\right)$ is a linear subspace of $\mathcal{H}.$ We set

$$\overline{T}_1 f = \lim_{n \to \infty} T_1 f_n, f \in \mathcal{D}(\overline{T}_1).$$

If $\{f_n'\}$ is another sequence contained in $\mathcal{D}(T_1)$ with $f_n' \to f$, $n = 1, 2, \ldots$, and $\|T_1(f_n' - f_m')\| \to 0$, $n, m \to \infty$, set $h_n = f_n - f_n'$; then $h_n \to 0$, $n \to \infty$, and $\|T_1(h_n - h_m)\| \to 0$, $n, m \to \infty$. Since T_1 is closeable we obtain $T_1h_n \to 0$. The proof that \overline{T}_1 is linear may be omitted. It must be shown now that \overline{T}_1 is closed. Let $\{f_n\}$ be a sequence contained in $\mathcal{D}(\overline{T}_1)$ with $f_n \to f$, $\overline{T}_1f_n \to g$, then we can choose for each f_n a $f_n' \in \mathcal{D}(T_1)$ with $\|f_n - f_n'\| \le \frac{1}{n}$ and $\|\overline{T}_1f_n - T_1f_n'\| \le \frac{1}{n}$. Therefore $f_n' \to f$, $T_1f_n' \to g$, $n \to \infty$, and consequently $f \in \mathcal{D}(\overline{T}_1)$, $g = \overline{T}_1f = \lim_{n \to \infty} T_1f_n'$. If T_2 is any closed continuation of T_1 then necessarily $f \to 0$, $f_1 \to 0$, and $f_1 \to 0$, $f_1 \to 0$, $f_1 \to 0$, and $f_1 \to 0$, $f_1 \to 0$, $f_1 \to 0$, $f_1 \to 0$, and $f_1 \to 0$, $f_$

As the following example shows there are Hilbert spaces H and operators T in H which are not closeable: Set $H = L^2((-1,+1))$, $\mathcal{D}(T) = C^0([-1,+1])$,

$$(Tf)(x) = f(0), f \in \mathcal{D}(T), x \in [-1,+1].$$

One easily constructs a sequence $\{f_n^{}\}$ contained in $\mathcal{D}(\mathtt{T})$ with

$$\|f_n\|_{L^2((-1,+1))} \to 0, n \to \infty,$$

$$1 = f_n(0) = (Tf_n)(x), x \in [-1,+1].$$

Take e.g. $f_n(x) = 0$, $-1 \le x \le -\frac{1}{n}$, $f_n(x) = nx+1$, $-\frac{1}{n} \le x \le 0$, $f_n(x) = -nx+1$, $0 \le x \le \frac{1}{n}$, $f_n(x) = 0$, $\frac{1}{n} \le x \le 1$. Since

$$\| \operatorname{Tf}_{n} \|_{L^{2}((-1,+1))} = \sqrt{2},$$

the operator T is not closeable.

We can now define the notion of the adjoint of an operator T.

Definition I.1.5: Let T be a linear operator in a Hilbert space \mathcal{H} with domain of definition $\mathcal{D}(T)$. Let $\mathcal{D}(T)$ be dense in \mathcal{H} . $\mathcal{D}(T^*)$ is the set of all $g \in \mathcal{H}$ such that there exists a $g^* \in \mathcal{H}$ with

(I.1.1)
$$(Tf,g) = (f,g^*), f \in \mathcal{D}(T).$$

To complete our definition we need

Theorem I.1.2: g^* in (I.1.1) is determined uniquely. If we set $g^*=: T^*g$, $g \in \mathcal{D}(T^*)$

then T^* is a linear closed operator in H with domain of definition $\mathcal{D}(T^*)$.

<u>Proof:</u> From the density of $\mathcal{D}(T)$ it follows that g^* is determined uniquely. The linearity of T^* does not need a proof. Now let $g_n \to g$, $T^*g_n \to h$, $n \to \infty$, with $g_n \in \mathcal{D}(T^*)$, $n = 1, 2, \ldots$. Then

$$(Tf,g_n) = (f,T*g_n),$$

$$(Tf,g) = (f,h), f \in \mathcal{D}(T).$$

The proof is completed.

We give some examples. The first one concerns ordinary differential operators. Let $H = L^2((a,b))$, let

$$\mathcal{D}(\mathbf{T}) = \mathbf{C}_{\mathbf{O}}^{\mathbf{N}}((\mathbf{a}, \mathbf{b}))$$

for some N \in IN, and let $p_k \in C^k((a,b))$, $1 \le k \le N$. Then we set

$$Tf(x) = \sum_{k=0}^{N} p_k(x) f^{(k)}(x), f \in \mathcal{D}(T).$$

 $\mathcal{D}(\mathtt{T})$ is dense in H since already $C_{\mathsf{O}}^{\infty}((\mathtt{a},\mathtt{b}))$ is dense in $\mathtt{L}^2((\mathtt{a},\mathtt{b}))$, and we have for f,g $\in \mathcal{D}(\mathtt{T})$

$$(\mathrm{Tf}, g) = \int_{a}^{b} f(x) \sum_{k=0}^{N} (-1)^{k} \overline{(\overline{p}_{k} \cdot \mathbf{g})^{(k)}(x)} dx,$$

$$= (f, T*g).$$

Thus $\mathcal{D}(T^*) \supset \mathcal{D}(T)$ and

$$T*g = \sum_{k=0}^{N} (-1)^k (\overline{p}_k \cdot g)^{(k)}, g \in \mathcal{D}(T).$$

The second example stems from the field of partial differential operators. Let Ω be a bounded open set of ${\rm I\!R}^n$, let ${\rm H}={\rm L}^2(\Omega)$. Let ${\rm m}\in{\rm I\!N}$. For each multiindex α of ${\rm I\!R}^n$ let there be given functions ${\rm A}_{\alpha}\in{\rm C}^{\left|\alpha\right|}(\Omega)$. We set

$$\mathrm{Tf}(\mathbf{x}) = \sum_{\alpha \mid \alpha \mid \leq 2m} A_{\alpha}(\mathbf{x}) D^{\alpha} f(\mathbf{x}), f \in \mathcal{D}(\mathbf{T}) = C_{\mathbf{0}}^{2m}(\Omega).$$

Then $C_O^{2m}(\Omega)$ is dense in H, since already $C_O^{\infty}(\Omega)$ is dense in H. The Theorem of Gauß furnishes

$$(\mathrm{Tf},\mathrm{g}) = \int\limits_{\Omega} \mathrm{f}(\mathrm{x}) \sum_{\left|\alpha\right| \leq 2\mathrm{m}} (-1)^{\left|\alpha\right|} \overline{\mathrm{D}^{\alpha}(\overline{\mathrm{A}}_{\alpha}\mathrm{g})(\mathrm{x})} \ \mathrm{d}\mathrm{x}, \ \mathrm{g} \in \mathcal{D}(\mathrm{T}).$$

Thus $\mathcal{D}(T^*) \supset \mathcal{D}(T)$,

$$T*g = \sum_{|\alpha| \leq 2m} (-1)^{|\alpha|} \cdot D^{\alpha}(\overline{A}_{\alpha}g),$$

 $g \in \mathcal{D}(T)$.

The next theorem gives a criterion for the existence of a closed continuation of a given linear operator.

Theorem I.1.3: Let T be a linear operator in \mathcal{H} with domain of definition $\mathcal{D}(T)$. Let $\mathcal{D}(T)$ and $\mathcal{D}(T^*)$ be dense. Then T is closeable and

$$T^* = \overline{T}^*$$
.

<u>Proof:</u> First we prove that T is closeable. Let $\{f_n\}$ be a sequence in $\mathcal{D}(T)$ with $f_n \to 0$, $Tf_n \to g$, $n = 1, 2, \ldots$. Let $h \in \mathcal{D}(T^*)$. Then

$$(g,h) = \lim_{n\to\infty} (Tf_n,h)$$

$$= \lim_{n\to\infty} (f_n,T^*h) = 0.$$

Since $\mathcal{D}(T^*)$ is dense in \mathcal{H} , we get g=0. Thus T is closeable. Now we prove the second assertion: Let $g\in\mathcal{D}(\overline{T}^*)$. Then

$$(\overline{T}f,g) = (f,\overline{T}*g), f \in \mathcal{D}(\overline{T}).$$

In particular, we get for $f \in \mathcal{D}(T)$

$$(\mathrm{Tf},\mathrm{g}) = (\mathrm{f},\overline{\mathrm{T}}^*\mathrm{g}),$$

$$g \in \mathcal{D}(T^*),$$

$$T^*g = \overline{T}^*g,$$

$$\mathcal{D}(\overline{T}^*) \subseteq \mathcal{D}(T^*).$$

As for the opposite direction let $g \in \mathcal{D}(T^*)$. Then

$$(Tf,g) = (f,T*g), f \in \mathcal{D}(T).$$

If $f \in \mathcal{D}(\overline{T})$, there is a sequence $\{f_n\}$ with $f_n \in \mathcal{D}(T)$, $f_n \to f$, $Tf_n \to \overline{T}f$, $n = 1, 2, \ldots$. Consequently, if f_n is inserted instead of f, the preceding equality furnishes

$$(\overline{T}f,g) = (f,T*g).$$

Thus $g \in \mathcal{D}(\overline{T}^*)$,

$$\mathcal{D}(\overline{T}^*) \geq \mathcal{D}(T^*),$$

$$\overline{T}^*g = T^*g.$$

The theorem is proved.

§ 2. The Graph of a Linear Operator

The set $H \times H = \{ \{f,g\} | f \in H, g \in H \}$ can be made a Hilbert space by the following definitions:

- (I.2.1) $\alpha\{f,g\} + \beta\{h,k\} := \{\alpha f + \beta h, \alpha g + \beta k\}, \alpha, \beta \in \mathbb{C}$,
- (1.2.2) $(\{f,g\},\{h,k\}) := (f,h) + (g,k),$ $\|\{f,g\}\| := (\|f\|^2 + \|g\|^2)^{1/2}.$

By (I.2.1) $H \times H$ becomes a vector space over $\mathbb C$ with {0,0} as the element zero. By (I.2.2) the structure of a Hilbert space is imposed on $H \times H$: It is easily shown that $H \times H$ is complete with the norm just defined.

Definition I.2.1: Let T be a linear operator in H with domain of definition $\mathcal{D}(T)$. The set

$$G(T) = \{ \{f, Tf\} | f \in \mathcal{D}(T) \}$$

is a linear subspace of HxH and called the graph of T.

If T_1 , T_2 are linear operators in H with domains of definition $\mathcal{D}(T_1)$, $\mathcal{D}(T_2)$, and if T_2 is a continuation T_1 (cf. Definition I.1.2), then this is evidently equivalent with

$$G(\mathbf{T}_1) \subseteq G(\mathbf{T}_2)$$
.

We also write in this case

$$(I.2.3) T_1 \subseteq T_2.$$

Proposition I.2.1: T is closed if and only if G(T) is closed.

<u>Proof:</u> Let G(T) be closed. Let $\{f_n, Tf_n\} \rightarrow \{f, g\}$, $n = 1, 2, \ldots$, in $H \times H$. Then $\{f, g\} \in G(T)$, $f_n \rightarrow f$, $Tf_n \rightarrow g$, $n = 1, 2, \ldots$. Thus $f \in \mathcal{D}(T)$, g = Tf, and T is closed. If T is closed and if $\{f_n, Tf_n\} \rightarrow \{f, g\}$, $n = 1, 2, \ldots$, then $f \in \mathcal{D}(T)$, g = Tf. Our proposition is proved.

Now we introduce an operator $U \in L(H \times H, H \times H)$. U is defined by $U:\{f,g\} \mapsto \{-g,f\}$.

Then evidently

$$u^2 = -1$$
.

Proposition I.2.2: Let T be a closed operator in # with dense domain of definition \mathcal{D} (T). Then

$$(I.2.4) G(T)^{\perp} = U(G(T^*)),$$

$$(I.2.5) (UG(T))^{\perp} = G(T^*).$$

<u>Proof:</u> 1. Let $\{\phi, \psi\} \in G(T)^{\perp}$. Then $(\{f, Tf\}, \{\phi, \psi\}) = O$ for all $f \in \mathcal{D}(T)$. Thus

$$(f,\phi) + (Tf,\psi) = O,$$

$$(Tf, \psi) = (f, -\phi), f \in \mathcal{D}(T).$$

Consequently $\psi \in \mathcal{D}(\mathbf{T}^*)$, $\mathbf{T}^*\psi = -\phi$ and $\{\phi,\psi\} \in \mathrm{U}(G(\mathbf{T}^*))$. If $\{-\mathbf{T}^*\psi,\psi\} \in \mathrm{U}(G(\mathbf{T}^*))$, then

$$(f, -T^*\psi) + (Tf, \psi) = O,$$

 $f \in \mathcal{D}(T)$. Thus

$$\{-\mathbf{T}^*\psi,\psi\}\in G(\mathbf{T})^{\perp}.$$

Thus (I.2.4) is proved.

2. Let $\{-Tf,f\} \in UG(T)$. Then we take an element $\{\phi,\psi\}$ with

$$(\{-Tf,f\},\{\phi,\psi\}) = 0$$
, thus $-(Tf,\phi) + (f,\psi) = 0$.

If f runs through all of $\mathcal{D}(T)$, then $\{-Tf,f\}$ runs through all of UG(T), and if $\{\phi,\psi\}$ is in $UG(T)^{\perp}$ we get: $\phi\in\mathcal{D}(T^*)$, $\psi=T^*\phi$, $\{\phi,\psi\}\in G(T^*)$. For the second direction we have to go through our relations from backward. Our proposition is proved.

Proposition I.2.3: Let T be a linear operator in \mathcal{H} with domain of definition $\mathcal{V}(T)$. Let T be closeable. Then

$$\overline{G(\mathbf{T})} = G(\overline{\mathbf{T}}).$$

Proof: The proof may be left to the reader.

Now we want to characterize closed operators in terms of their adjoints.

Theorem I.2.1: Let T be a closed linear operator in H with dense domain of definition $\mathcal{D}(T)$. Then $\mathcal{D}(T^*)$ is also dense in H, and moreover

$$(I.2.6) T** = T.$$

<u>Proof:</u> We first show that $\mathcal{D}(T^*)$ is dense in \mathcal{H} . If $\mathcal{D}(T^*)$ is not dense in \mathcal{H} , then there is an $h \in \mathcal{H}$ such that

$$h \neq O$$
,
 $(g,h) = O$, $g \in \mathcal{D}(T^*)$.

Thus $(\{-T*g,g\},\{0,h\}) = 0$ for all $g \in \mathcal{D}(T*)$ and $\{0,h\} \in (UG(T*))^{\perp}$. According to Proposition I.2.2 we have

$$\{O,h\} \in ((G(T))^{\perp})^{\perp} = G(T),$$

 $\{O,h\} = \{f,Tf\}$

for some $f \in \mathcal{D}(T)$, and consequently f = 0, Tf = h = 0. Therefore $\mathcal{D}(T^*)$ is dense, and we can construct T^{**} . Since $\mathcal{G}(T^{**}) = (U\mathcal{G}(T^*))^{\perp} = \mathcal{G}(T)$ by Proposition I.2.2 we arrive at $T^{**} = T$, and our Theorem is proved.

Remark: If T, ST2, &(T,) dense in H, then T2* ST.

Theorem I. 2.2: Let T be a closeable operator in \mathcal{H} with dense domain of definition $\mathcal{D}(T)$. Then $\mathcal{D}(T^*)$ is dense in \mathcal{H} and $T^{**} = \overline{T}$.

<u>Proof:</u> From the preceding theorem it follows that \overline{T}^* has dense domain of definition $\mathcal{D}(\overline{T}^*)$ and that $\overline{T}^{**} = \overline{T}$. From Theorem I.1.3 we get with $\overline{T}^* \subseteq \overline{T}^*$ that $\mathfrak{D}(T^*)$ is dense and that $(\overline{T}^*)^* = T^{**}$.

§ 3. Hermitian Operators

We start with

Definition I.3.1: A linear operator H in a Hilbert space H with domain of definition $\mathcal{D}(H)$ is called hermitian if and only if

- 1. $\mathcal{D}(H)$ is dense in \mathcal{H} ,
- 2. $(Hf,g) = (f,Hg), f,g \in \mathcal{D}(H)$.

Shortly spoken, an operator H is hermitian if H* \supseteq H. We give an <u>example</u>: Let $\mathcal{H} = L^2(\Omega)$, where Ω is a bounded open set of \mathbb{R}^n , let $\mathcal{D}(H) = C_0^{\infty}(\Omega)$. Let m \in IN. Let there be given functions $A_{\alpha\beta} \in C^m(\Omega)$ for all multiindices α , β of \mathbb{R}^n with $|\alpha|$, $|\beta| \leq m$. Moreover we assume that

(I.3.1)
$$A_{\alpha\beta} = (-1)^{|\alpha|+|\beta|} \overline{A_{\beta\alpha}}$$
.

We set

$$Hu = \sum_{\substack{|\alpha| \le m, \\ |\beta| \le m}} D^{\alpha} (A_{\alpha\beta} D^{\beta} u),$$

 $u \in \mathcal{D}(H)$. By Gauß's Theorem we get

$$(\mathrm{Hf,g}) = (\mathrm{f,} \sum_{\substack{|\alpha| \leq m, \\ |\beta| \leq m}} (-1)^{|\alpha| + |\beta|} \mathrm{D}^{\beta} (\overline{\mathrm{A}_{\alpha\beta}} \mathrm{D}^{\alpha} \mathrm{g})),$$

provided f,g $\in C_0^{\infty}(\Omega)$. Thus (Hf,g) = (f,Hg), f,g $\in \mathcal{D}(H)$ by (I.3.1).

<u>Definition I.3.2:</u> Let A be a linear operator in H with dense domain of definition A(A). A is called selfadjoint if and only if $A^* = A$.

Proposition I.3.1: Let A be a linear operator in H with dense domain of definition $\mathcal{D}(A)$. Then A is selfadjoint if and only if

- 1. A is hermitian.
- 2. If $(Au, v) = (u, v^*)$ for all $u \in \mathcal{D}(A)$ and some $v, v^* \in \mathcal{H}$, then $v \in \mathcal{D}(A)$ and $v^* = Av$. Every selfadjoint operator is hermitian and closed.

Since the proof of this proposition is trivial, we omit it. Now we give an example for a selfadjoint operator. Let $\mathcal{H}=1_2$, i.e. the space of all sequences $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2,\ldots)$ of complex numbers with $\sum_{k=1}^{\infty}|\mathbf{x}_k|^2<+\infty$ and scalar product $(\mathbf{x},\mathbf{y})=\sum_{k=1}^{\infty}\mathbf{x}_k\overline{y}_k$. We set $\mathcal{D}(\mathbf{A})=\{\mathbf{x}\big|\mathbf{x}\in\mathbf{1}_2,\sum_{k=1}^{\infty}\mathbf{k}^2\big|\mathbf{x}_k\big|^2<+\infty\}$ and

$$Ax = (x_1, 2x_1, 3x_3, \dots), x \in \mathcal{D}(A).$$

Evidently, A is hermitian. Now let $(Ax,y) = (x,y^*)$ for all $x \in \mathcal{D}(A)$ and some y, $y^* \in l_2$. Then we have

$$\sum_{k=1}^{\infty} k x_k \overline{y}_k = \sum_{k=1}^{\infty} x_k \overline{y}_k^*$$

if $y=(y_1,y_2,\ldots)$, $y^*=(y_1^*,y_2^*,\ldots)$. We set: $x^{(\mu)}$ is the sequence whose components are O with the exception of the μ -th one, which is 1. Then we get: $\mu y_{\mu}=y_{\mu}^*$, $\mu=1,2,\ldots$, and consequently $y\in\mathcal{D}(A)$, $y^*=Ay$.

Theorem I.3.1: Let H be a hermitian operator in H with domain of definition H. Then H is selfadjoint.

Proof: It follows that $H^* = H$.

Definition I.3.3: Let H be a hermitian operator in H with domain of definition $\mathcal{D}(H)$. H is called essentially selfadjoint if and only if its closure \overline{H} is selfadjoint.

In order to explain this definition we first remark that with H also its closure \overline{H} is hermitian. Namely, let $f,g \in \mathcal{D}(\overline{H})$, $f_n \to f$, $g_n \to g$, $n \to \infty$, with $f_n, g_n \in \mathcal{D}(H)$, and $Hf_n \to \overline{H}f$, $Hg_n \to \overline{H}g$, then $(Hf_n, g_n) = (f_n, Hg_n)$ and consequently $(\overline{H}f, g) = (f, \overline{H}g)$. Our definition is equivalent with each of the following statements:

- (I.3.2) $\overline{H}^* = \overline{H}$,
- (I.3.3) $H^* = \overline{H}$,
- (I.3.4) H* = H**.

(I.3.2) is clear, Theorem I.1.3 furnishes the relation $\overline{H}^* = H^*$, and from (I.3.2) we get $H^* = \overline{H}$. From (I.3.3) we get then with Theorem I.2.2 the relation (I.3.4). From (I.3.4) it follows with $H^* = \overline{H}^*$ and $H^{**} = \overline{H}$ that (I.3.2) holds.

Next we want to characterize the selfadjointness of a hermitian operator H in terms of the subspaces (H+i)(\mathcal{H}), (H-i)(\mathcal{H}). For a linear operator T in \mathcal{H} with domain of definition \mathcal{D} (T) we set

(I. 3.5)
$$R(T) = T(H) = \{Tf | f \in \mathcal{D}(T)\}.$$

Evidently R(T) is a linear subspace of H, it's called the range of T.

Theorem I.3.2: Let H be a hermitian operator in H with domain of definition $\mathcal{D}(H)$. Then H is selfadjoint if and only if

$$R(H+i) = H \text{ and } R(H-i) = H.$$

Let us remark that in general we write $T+\lambda$ for the operator $T+\lambda I$ being defined on $\mathcal{D}(T)$; λ is any complex number.

<u>Proof:</u> Let us first assume that H is selfadjoint. For $f \in \mathcal{D}(H)$ we have

$$\| (H\pm i) f \|^{2} = (Hf\pm if, Hf\pm if)$$

$$= \| Hf \|^{2} + \| f \|^{2} \pm (if, Hf) \pm (Hf, if),$$

$$= \| Hf \|^{2} + \| f \|^{2} \pm i(f, Hf) + i(Hf, f),$$

$$= \| Hf \|^{2} + \| f \|^{2}.$$

Thus $\|(H\pm i)f\| \ge \|f\|$. Thus we can define the inverse $(H\pm i)^{-1}$ of $(H\pm i)$ on $R(H\pm i)$. We have $\|(H\pm i)^{-1}\| \le 1$. Now we show that $R(H\pm i)$ are closed subspaces of H. Let $g \in \overline{R(H\pm i)}$, $g_n \to g$, $n \to \infty$, with $g_n \in R(H\pm i)$. Then $g_n = (H\pm i)f_n$ with uniquely determined $f_n \in \mathcal{D}(H)$. Since

$$\|g_{n}-g_{m}\| = \|(H\pm i)(f_{n}-f_{m})\| \ge \|f_{n}-f_{m}\|$$

we obtain that $f_n \to f$, $n \to \infty$. Thus $Hf_n \to g \pm if$, $n \to \infty$; since H is closed we arrive at $f \in \mathcal{D}(H)$, $Hf = g \pm if$, $(H \pm i)g = g$, $g \in \mathcal{R}(H \pm i)$. Consequently, $\mathcal{R}(H \pm i)$ is closed. If $\mathcal{R}(H + i) \neq \mathcal{H}$, then there exists a $g \in \mathcal{H}$ with

$$((H+i)f,g) = 0, f \in \mathcal{D}(H),$$

 $||g|| = 1.$

Therefore (Hf,g) = (f,ig), $g \in \mathcal{D}(H)$, Hg = ig, since we have assumed H to be selfadjoint. Since $O = \| (H-i)g \| \ge \| g \|$ we arrive at g = O which is a contradiction. The case $R(H-i) \ne H$ is treated analogously. Thus we have proved that $R(H\pm i) = H$. As for the second direction we assume that $R(H\pm i) = H$. Now let

$$(Hf,g) = (f,g^*), f \in \mathcal{D}(H).$$

Thus

$$((H+i)f,g) = (f,g*-ig), f \in \mathcal{D}(H),$$

and there is an $h \in \mathcal{D}(H)$ with $g^*-ig = (H-i)h$; it follows that

$$((H+i)f,g) = (f,(H-i)h),$$

= $((H+i)f,h), f \in \mathcal{D}(H).$

Since R(H+i) = H we get $g = h \in \mathcal{D}(H)$. Thus H is selfadjoint. Our theorem is proved.

П

Proposition I.3.2: Let H be a hermitian operator in H with domain of definition $\mathcal{D}(H)$. Then $\overline{\mathcal{R}(H\pm i)} = \mathcal{R}(\overline{H}\pm i)$.

<u>Proof:</u> Let $g \in \overline{R(H+i)}$, $g = \lim_{n \to \infty} (H+i) f_n$. Since $\|f_n - f_m\| \le \|(H+i)(f_n - f_m)\|$, the sequence $\{f_n\}$ is convergent; we set $f = \lim_{n \to \infty} f_n$. Then $\{Hf_n\}$ is also convergent; we set $f = \lim_{n \to \infty} f_n$.

$$g = \lim_{n \to \infty} Hf_n$$

and obtain $\mathrm{Hf}_n \to \mathrm{g-if}=\widetilde{\mathfrak{g}}, n \to \infty$, $\mathrm{f} \in \mathcal{D}(\overline{\mathrm{H}})$, $\overline{\mathrm{Hf}}=\mathrm{g-if}$, $(\overline{\mathrm{H}}+\mathrm{i})\mathrm{f}=\mathrm{g}$. Thus $\mathrm{g} \in \mathcal{R}(\overline{\mathrm{H}}+\mathrm{i})$. Analogously we can prove that $\overline{\mathcal{R}(\mathrm{H}-\mathrm{i})} \subset \mathcal{R}(\overline{\mathrm{H}}-\mathrm{i})$. As for the second part of the proof let $\mathrm{g} \in \mathcal{R}(\overline{\mathrm{H}}+\mathrm{i})$. Then $\mathrm{g} = \overline{\mathrm{Hf}}+\mathrm{if}$ with a unique $\mathrm{f} \in \mathcal{D}(\overline{\mathrm{H}})$ (observe that $\overline{\mathrm{H}}$ is also hermitian). Thus there is a sequence f_n with $\mathrm{f}_n \in \mathcal{D}(\mathrm{H})$, $\mathrm{n} = 1, 2, \ldots, \mathrm{f}_n \to \mathrm{f}$, $\mathrm{Hf}_n \to \overline{\mathrm{Hf}}$, $\mathrm{n} \to \infty$. Thus $(\mathrm{H}+\mathrm{i})\mathrm{f}_n \to (\overline{\mathrm{H}}+\mathrm{i})\mathrm{f} = \mathrm{g}$, $\mathrm{n} \to \infty$, and $\mathrm{R}(\overline{\mathrm{H}}+\mathrm{i}) \subset \overline{\mathrm{R}(\mathrm{H}+\mathrm{i})}$. In the same way it is shown that $\mathrm{R}(\overline{\mathrm{H}}-\mathrm{i}) \subset \overline{\mathrm{R}(\mathrm{H}-\mathrm{i})}$. Our proposition is proved.

Proposition I.3.3: Let H be hermitian with domain of definition $\mathcal{D}(H)$. Then

 $\|(H-z)f\| \ge \|Im z\|\|f\|$, $f \in \mathcal{D}(H)$, $z \in C$.

<u>Proof:</u> Let z = a+ib with $a,b \in \mathbb{R}$, $b \neq 0$. Then H-a is hermitian and

As a consequence from Proposition I.3.3 we get that for every hermitian operator H with domain of definition $\mathcal{D}(H)$ the operator $(H-z)^{-1}$ exists with domain of definition $\mathcal{R}(H-z)$ and is bounded, i.e.

$$\| (H-z)^{-1} f \| \le \frac{1}{\|Im z\|} \| f \|, f \in R(H-z),$$

provided Im z + O.

Theorem I.3.3: Let H be hermitian with domain of definition $\mathcal{D}(H)$. H is essentially selfadjoint if and only if

$$\overline{R(H\pm i)} = H.$$

<u>Proof:</u> \overline{H} is selfadjoint if and only if $R(\overline{H}\pm i) = H$, but according to Proposition I.3.3 this is equivalent to $\overline{R(\overline{H}\pm i)} = H$.

Next we treat some examples:

1st Example: We set $H = L^2((-\pi, +\pi))$,

$$\mathcal{D}(H_{O}) = C_{O}^{2}((-\pi, +\pi)),$$

$$H_{O}u = -u'', u \in \mathcal{D}(H_{O}).$$

Then $\mathcal{D}(\mathbf{H}_{\mathbf{O}})$ is dense in \mathcal{H} and $\mathbf{H}_{\mathbf{O}}$ is hermitian, since by partial integration

$$\int_{-\pi}^{+\pi} (-u'') \overline{v} dx = \int_{-\pi}^{+\pi} u \overline{(-v'')} dx,$$

 $u,v \in C_O^2((-\pi,+\pi))$. H_O , however, is not essentially selfadjoint. This is seen as follows: For $u \in \mathcal{D}(H_O)$ we even have

$$((H_{O}-i)u,v) = \int_{-\pi}^{+\pi} (-u^{**}-iu)\overline{v} dx,$$

$$= \int_{-\pi}^{+\pi} (-u\overline{v^{**}}-iu\overline{v}) dx,$$

$$= \int_{-\pi}^{+\pi} u\overline{(v^{**}+iv)} dx, v \in \mathbb{C}^{2}((-\pi,+\pi)).$$

 $v=e^{\sqrt{+i}\cdot}$ is a twice continuously differentiable function on $[-\pi,+\pi]$ with $-v^{**}+iv=0$ on $[-\pi,+\pi]$. Thus $v\in L^2((-\pi,+\pi))$ is orthogonal to $R(H_0-i)$, but $v\neq 0$. Therefore $R(H_0-i)$ is not dense in H.

By partial integration it can be easily shown that H_1 is hermitian. We claim that H_1 is essentially selfadjoint. To prove this we first observe that the functions

$$\varphi_{k}(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}, k = 0, \pm 1, \pm 2, ...,$$

have the following properties: $\boldsymbol{\phi}_k \in \mathcal{D}\left(\boldsymbol{H}_1\right)$,

$$H_1 \varphi_k = k^2 \varphi_k$$

 $\{\phi_k \mid k = 0, \pm 1, \pm 2, ...\}$ is a complete orthonormal system in \mathcal{H} .

Our assertion is then furnished by the

Proposition I.3.4: Let H be a hermitian operator in a Hilbert space H with domain of definition $\mathcal{D}(H)$. If there is a complete orthonormal system $\{\widetilde{\varphi}_1, \widetilde{\varphi}_2, \ldots\}$ in H with

(1.3.6)
$$H\widetilde{\varphi}_k = \lambda_k \widetilde{\varphi}_k$$
, $k = 1, 2, ...$

for some $\lambda_k \in C$, $k = 1, 2, \dots$, then H is essentially selfadjoint.

<u>Proof:</u> From (I.3.6) it follows that $\lambda_k \in \mathbb{R}$. The set

$$\mathcal{D} = \{f | f = \sum_{k=1}^{N} c_k \widetilde{\phi}_k \text{ for some N } \in \mathbb{IN} \text{ and some } c_1, \dots, c_N \in \mathbb{C} \}$$

is contained in $\mathcal{D}(H)$ and dense in \mathcal{H} . Let $g \in \mathcal{H}$. Thus for each $\varepsilon > 0$ there are a $N(\varepsilon) \in \mathbb{I}N$ and $d_1, \ldots, d_{N(\varepsilon)} \in \mathbb{C}$ such that

$$\|g - \sum_{k=1}^{N(\varepsilon)} d_k \widetilde{\varphi}_k \| < \varepsilon.$$

If we set
$$c_k = \frac{d_k}{\lambda_k + i}$$
 and $f_{N(\epsilon)} = \sum_{k=1}^{N(\epsilon)} c_k \widetilde{\phi}_k$, then

$$\|g - (H+i)f_{N(\epsilon)}\| < \epsilon$$
.

Thus R(H+i) is dense in H. Replacing λ_k +i by λ_k -i we get that also R(H-i) is dense in H. Our proposition is proved.

Of course H₁ is not selfadjoint since $R(H+i) \subset C^{O}([-\pi,+\pi]) \subset L^{2}((-\pi,+\pi))$.

3rd Example: We set

 $\mathcal{D}(H_2) = \{u \mid u \in L^2((-\pi, +\pi))\}$. There are a N \in IN and complex numbers u_1, \dots, u_N such that

$$u(x) = \frac{1}{\sqrt{2\pi}} \sum_{k=-N}^{+N} u_k e^{ikx} \text{ a.e. on } (-\pi, +\pi) \},$$

$$H_2u = -u'', u \in \mathcal{D}(H_2).$$

Then ${\rm H_2}\subseteq {\rm H_1}$. Of course the numbers ${\rm u_k}$ in the definition of ${\it D}$ (H₂) are determined uniquely, namely we get

$$u_{k} = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{+\pi} u(x) e^{-ikx} dx.$$

 $\mathcal{D}(H_2)$ is dense in $\mathcal{H}=L^2((-\pi,+\pi))$, H_2 is hermitian. Proposition I.3.4 shows that H_2 is essentially selfadjoint. We have $\overline{H_2}\subseteq\overline{H_1}$, but in view of the proposition to follow we even get

$$\overline{H_2} = \overline{H_1}$$

Proposition I.3.5: 1. Let T_1, T_2 be densely defined linear operators in H with domain of definition $\mathcal{D}(T_1), \mathcal{D}(T_2)$. Let $T_2 \subseteq T_1$.

Then

$$T_1^* \subseteq T_2^*$$
.

2. Let A be a selfadjoint operator in $\mathcal H$ with domain of definition $\mathcal D$ (A). Let T be a hermitian operator in $\mathcal H$ with domain of defini-

tion $\mathcal{D}(T)$ and with

$$A \subseteq T$$
.

Then

A = T.

<u>Proof:</u> Let $y \in \mathcal{D}(T_1^*)$. Then we have

$$(\mathtt{T}_{2}\mathtt{x},\mathtt{y}) \ = \ (\mathtt{T}_{1}\mathtt{x},\mathtt{y}) \ = \ (\mathtt{x},\mathtt{T}_{1}^{*}\mathtt{y}) \ , \ \mathtt{x} \in \mathcal{D}(\mathtt{T}_{2}) \ .$$

Thus $y \in \mathcal{D}(T_2^*)$ and $T_2^*y = T_1^*y$. As for the second assertion, it now follows with the first one:

$$A \subseteq T \subseteq T^* \subseteq A^* = A$$

which implies A = T.

4th Example: We set

$$\mathcal{D}(H_3) = \{u \mid u \in L^2((-\pi, +\pi)), \sum_{k=-\infty}^{+\infty} k^4 \mid \int_{-\pi}^{+\pi} u(x) e^{-ikx} dx \mid^2 < +\infty \},$$

$$H_3 u = \sum_{k=-\infty}^{+\infty} k^{2(\frac{1}{2} + \pi)} u(x) e^{-ikx} dx) \frac{1}{\sqrt{2\pi}} e^{ikx}, u \in \mathcal{D}(H_3).$$

Evidently, $\mathrm{H}_2\subseteq\mathrm{H}_3$. We now show that H_3 is selfadjoint. First H_3 is hermitian since

$$(H_3 u, f) = \sum_{k=-\infty}^{+\infty} k^2 \left(\left(\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{+\pi} u(x) e^{-ikx} dx \right) \frac{e^{ik}}{\sqrt{2\pi}}, f \right)$$

$$= \int_{-\pi}^{+\pi} u(x) \sum_{k=-\infty}^{+\infty} k^2 \int_{-\pi}^{+\pi} \frac{e^{iky}}{f(y)} \frac{e^{iky}}{\sqrt{2\pi}} dy \frac{e^{-ikx}}{\sqrt{2\pi}} dx,$$

$$= \int_{-\pi}^{+\pi} u(x) \sum_{k=-\infty}^{+\infty} k^{2} \int_{-\pi}^{+\pi} f(y) \frac{e^{-iky}}{\sqrt{2\pi}} dy \frac{e^{ikx}}{\sqrt{2\pi}} dx,$$

$$= (u, H_{3}f),$$

 $u \in \mathcal{V}(H_3)$, $f \in \mathcal{V}(H_3)$. Now we want to show that H_3 is selfadjoint. For any $f \in L^2((-\pi,+\pi))$ we have to solve the equations

$$(H_3+i)u = f,$$

 $(H_3-i)u = f.$

If we use the notation $\phi_k = \frac{1}{\sqrt{2\pi}} e^{ik}$, $k \in ZZ$, we have

$$f = \sum_{k=-\infty}^{+\infty} f_k \varphi_k$$

and $u_1 = \sum_{k=-\infty}^{\infty} u_{1k} \phi_k$ with $u_{1k} = \frac{f_k}{k^2 + i}$ is the solution of $(H_3 + i)u = f$ (observe that $k^4 |u_{1k}|^2 \le |f_k|^2$ and consequently $u_1 \in \mathcal{D}(H_3)$); analogously we get that $u_2 = \sum_{k=-\infty}^{\infty} u_{2k} \phi_k$ with $u_{2k} = \frac{f_k}{k^2 - i}$ is in $\mathcal{D}(H_3)$ and solves $(H_3 - i)u = f$. We get $H_3 = \overline{H_2} = \overline{H_1}$ with Proposition I.3. .

The next theorems are important for applications.

Theorem I.3.4: Let H be hermitian in H with domain of definition $\mathcal{D}(H)$. If there is a real number c such that

$$R(H+c) = H$$

then H is selfadjoint.

<u>Proof:</u> Let $g \in \mathcal{D}(H^*)$. Then we have for all $f \in \mathcal{D}(H) = \mathcal{D}(H+c)$ the equations

$$(Hf,g) = (f,H*g),$$

 $((H+c)f,g) = (f,H*g) + (f,cg),$
 $= (f,(H*+c)g).$

Since R(H+c) = H there is a $\phi \in \mathcal{D}(H)$ such that

$$(H+c)\phi = (H*+c)g,$$

 $((H+c)f,g) = (f,(H+c)\phi) = ((H+c)f,\phi).$

Consequently $\mathcal{D}(H^*) \subset \mathcal{D}(H)$, and our theorem is proved.

Theorem I.3.5: Let H be hermitian in H with domain of definition $\mathcal{D}(H)$. If there is a real number c such that $(H+c)^{-1}$ is densely defined in H and bounded, i.e. $\|(H+c)f\| \ge a \|f\|$, $f \in \mathcal{D}(H)$, for some positive constant a, then H is essentially selfadjoint.

<u>Proof:</u> If we can show that $R(\overline{H}+c) \supseteq \overline{R(H+c)} = H$, then it follows from Theorem I.3.4 that \overline{H} is selfadjoint. Let now $g \in \overline{R(H+c)}$. Then there is a sequence $\{f_n\}$ with $f_n \in \mathcal{D}(H+c) = \mathcal{D}(H)$, $n = 1, 2, \ldots$, such that

$$(H+c) f_n \rightarrow g, n \rightarrow \infty.$$

Since $\|f_n - f_m\| \le a\| (H+c) (f_n - f_m)\|$ we obtain that $f_n \to f$, $n \to \infty$, for some $f \in \mathcal{H}$. Thus

$$\| H(f_n - f_m) \| = \| (H+c) (f_n - f_m) - c (f_n - f_m) \|$$

$$\leq \| (H+c) (f_n - f_m) \| + |c| \| f_n - f_m \| .$$

Consequently the sequence $\{\mathrm{Hf}_n\}$ is also convergent and f is in $\mathcal{D}\left(\overline{\mathrm{H}}\right)$ with

$$(\overline{H}+c)f = g.$$

Our theorem is proved.

II. Spectral Theory of
 Selfadjoint Operators

§ 1. The Resolvent of Selfadjoint Operators

Definition II.1.1: Let T be a linear operator in a Hilbert space \mathcal{H} with domain of definition $\mathcal{D}(T)$. The resolvent set of T is the set of all $z \in \mathbb{C}$ such that

$$R(T-z) = H$$
,
 $(T-z)x = 0$ implies $x = 0$,
 $(T-z)^{-1}$ is bounded.

We denote the resolvent set of T by $\Sigma(T)$. Its complement

$$S(T) = C - \Sigma(T)$$

is called the spectrum of T. If $z \in \Sigma(T)$, then $(T-z)^{-1}$ is called the resolvent of T in z.

In view of Proposition I.3.3 the theorem to follow is close by

Theorem II.1.1: Let A be selfadjoint in H with domain of definition $\mathcal{D}(A)$. Let $z \in \mathbb{C}$, Im $z \neq 0$. Then $z \in \Sigma(A)$, and we have

$$\| (A-z)^{-1} \| \leq \frac{1}{|\operatorname{Im} z|}.$$

Proof: According to Proposition I.3.3 we have

As in the first part of the proof of Theorem I.3.2 we can show that R(A-z) is a closed subspace of H if Im $z \neq 0$. If $R(A-z) \neq H$, then there is a $g \in H$ such that $g \neq 0$,

$$((A-z)f,g) = 0, f \in \mathcal{D}(A).$$

Thus

$$(Af,g) = (zf,g) = (f,\overline{z}g),$$

 $g \in \mathcal{D}(A),$
 $Ag = \overline{z}g.$

From (II.1.1) it follows that g = 0. Our theorem is proved.

Theorem II.1.2: A real number λ_{O} is in $\Sigma(A)$, for a selfadjoint operator A in \mathcal{H} with domain of definition $\mathcal{D}(A)$, if and only if

$$\| (A-\lambda_0) f \| \ge c \| f \|$$
, $f \in \mathcal{D}(A)$,

with some positive constant c.

<u>Proof:</u> Let $\lambda_0 \in \Sigma(A)$. Then $\|(A-\lambda_0)f\| \ge c \|f\|$, $f \in \mathcal{D}(A)$, for some c > 0. Now, let

$$\| (A-\lambda_0) f \| \ge c \| f \|$$
, $f \in \mathcal{D}(A)$,

for some c > 0. As in the first part of the proof of Theorem I.3.2 one shows that $R(A-\lambda_0)$ is a closed subspace of H. From this it follows as in the proof of the preceding theorem that $R(A-\lambda_0) = H$. Theorem I.3.4 completes the proof.

For the resolvent of a selfadjoint operator A in $\mathcal H$ we often write

(II.1.2)
$$R_z = R_z(A) = (A-z)^{-1}, z \in \Sigma(A)$$
.

Next we prove the resolvent equation.

Theorem II.1.3: Let A be selfadjoint with domain of definition $\mathcal{D}(A)$. Let $z_1, z_2 \in \Sigma(A)$. Then

(II.1.3)
$$R_{z_1} - R_{z_2} = (z_1 - z_2) R_{z_1} R_{z_2}$$

Proof: For $z \in \Sigma(A)$ we have

$$(A-z)R_zf = f, f \in H,$$

 $R_z(A-z)f = f, f \in D(A).$

Thus

$$(R_{z_1} - R_{z_2}) g = (A - z_1)^{-1} g - (A - z_2)^{-1} g,$$

$$= (A - z_1)^{-1} (A - z_2) (A - z_2)^{-1} g - (A - z_1)^{-1} (A - z_1) (A - z_2)^{-1} g,$$

$$= (A - z_1)^{-1} ((A - z_2) (A - z_2)^{-1} - (A - z_1) (A - z_2)^{-1}) g,$$

$$= (A - z_1)^{-1} (A - z_2 - (A - z_1)) (A - z_2)^{-1} g,$$

$$= (z_1 - z_2) R_{z_1} R_{z_2} g, g \in H.$$

Our theorem is proved.

The preceding theorem has far reaching consequences, namely the analyticity of $R_{\rm Z}$. We prefer to give another proof of this property of the resolvent.

Theorem II.1.4: Let $z_0 \in \Sigma(A)$ and $|z-z_0| < ||R_z||^{-1}$. Then $z \in \Sigma(A)$ and

(II.1.4)
$$R_z = \sum_{k=0}^{\infty} (z-z_0)^k R_{z_0}^{k+1}$$
.

The series in (II.1.4) converges with respect to the norm of L(H,H).

Before we give the proof we remark that $\|R_Z\| > 0$ if $z \in \Sigma(A)$. Thus it in particular follows from Theorem II.1.4 that $\Sigma(A)$ is open. We also remind the reader of a general theorem in Banach spaces \mathcal{B} . If $B \in L(\mathcal{B},\mathcal{B})$ and if $\|B\| < 1$, then

(II.1.5)
$$(I-B)^{-1} = \sum_{k=0}^{\infty} B^k$$
,

where the series in (II.1.5) converges in the topology of the space of bounded operators $L(\mathcal{B},\mathcal{B})$ from \mathcal{B} into itself.

<u>Proof of Theorem II.1.4:</u> Since $|z-z_0| \|R_z\| < 1$ we can apply (II.1.5) to the operator $(z-z_0) R_{z_0}$. This yields the expansion

$$(I-(z-z_0)R_{z_0})^{-1} = \sum_{k=0}^{\infty} (z-z_0)^k R_{z_0}^k$$

We set

$$C = \sum_{k=0}^{\infty} (z-z_0)^k R_{z_0}^{k+1},$$

$$= R_{z_0} (I-(z-z_0)R_{z_0})^{-1},$$

$$= (I-(z-z_0)R_{z_0})^{-1}R_{z_0}.$$

We want to show that $C = R_Z$. Firstly we have $Cf \in \mathcal{D}(A)$, $f \in \mathcal{H}$. Then

$$(A-z)Cf = (A-z_0)(I-(z-z_0)R_{z_0}) \cdot (I-(z-z_0)R_{z_0})^{-1}R_{z_0}f,$$

= $(A-z_0)R_{z_0}f = f.$

Thus R(A-z) = H. On the other hand

$$C(A-z)f = (I-(z-z_0)R_{z_0})^{-1}R_{z_0}(A-z)f,$$

$$= (I-(z-z_0)R_{z_0})^{-1}R_{z_0}(A-z_0)(I-(z-z_0)R_{z_0})f,$$

$$= f, f \in \mathcal{D}(A),$$

and we obtain the uniqueness of A-z. Since C is the bounded inverse of A-z our theorem is proved.

As a consequence of Theorem II.1.4 we obtain that for g,f \in H the function ϕ (.) = (R_Zf,g) is holomorphic in Σ (A) and admits the expansion

$$\phi(z) = \sum_{k=0}^{\infty} (R_{z_0}^{k+1} f, g) (z-z_0)^k$$

around z_0 where $|z-z_0| < ||R_z_0||^{-1}$.

Next we characterize the adjoint of R_{z} .

Theorem II.1.5: Let A be a selfadjoint operator in H with domain of definition $\mathcal{D}(A)$. Let $z \in \Sigma(A)$. Then

$$R_z^* = R_{\overline{z}}.$$

<u>Proof:</u> Let f,g $\in \mathcal{D}(A)$. Then

$$((A-z)f,g) = (f,(A-\overline{z})g).$$

If we set $f = R_z u$, $g = R_{\overline{z}} v$, then

$$(u, R_{\overline{z}}v) = (R_{\overline{z}}u, v) = (u, R_{\overline{z}}^*v)$$

Since u,v run through all of H if f,g do so in $\mathcal{D}(A)$ our theorem is proved.

§ 2. Spectral Families

First we concentrate on the case of a finite dimensional Euclidean space \mathcal{H} . Let dim $\mathcal{H}=n$, let A be a hermitian operator in \mathcal{H} , i.e. A is represented by a hermitian (n,n)-matrix which is also denoted by A. If $\{\phi_1,\ldots,\phi_n\}$ is a complete orthonormal system in \mathcal{H} of eigenfunctions of A belonging to the (real) eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$, then

$$f = \sum_{i=1}^{n} (f, \phi_i) \phi_i,$$

$$Af = \sum_{i=1}^{n} \lambda_i (f, \phi_i) \phi_i,$$

$$R_z f = (A-z)^{-1} f = \sum_{i=1}^{n} \frac{1}{\lambda_i - z} (f, \phi_i) \phi_i, \quad \text{Im } z \neq 0;$$

here the eigenvalues are counted according to their multiplicities.
We set

$$E(\lambda)f = \begin{cases} \sum_{i,\lambda_{i} \leq \lambda} (f,\phi_{i})\phi_{i} & \text{if } \lambda \geq \lambda \\ \\ 0, & \text{if } \lambda < \lambda_{1}, & \text{f } \in \mathcal{H}. \end{cases}$$

Then $E(\lambda)$ is bounded, everywhere defined and constant on $[-\infty, \lambda_1)$, $[\lambda_1, +\infty)$, $[\lambda_i, \lambda_{i+1})$ if $\lambda_i \neq \lambda_{i+1}$. In particular we have

$$E(\lambda) = 0, \lambda < \lambda_{1},$$

$$E(\lambda) = I, \lambda \ge \lambda_{n},$$

$$(E(\lambda_{i} + \epsilon) - E(\lambda_{i} - \epsilon)) f = \sum_{j, \lambda_{j} = \lambda_{j}} (f, \phi_{j}) \phi_{j}$$

if $\epsilon > 0$ is sufficiently small. With what was said before on the $E(\lambda)$ we obtain

$$E(\lambda+O)f = \lim_{\epsilon > O} E(\lambda+\epsilon)f = E(\lambda)f$$
, $f \in H$.
 $\epsilon > O$

Thus $E(\lambda)f$ is strongly continuous from the right. We also easily get

$$E(\lambda)E(\mu) = E(\min(\lambda,\mu)),$$
$$E(\lambda)^* = E(\lambda).$$

Thus each $E(\lambda)$ is a projection; the set $\{E(\lambda) \mid \lambda \in \mathbb{R}\} \subset L(\mathcal{H},\mathcal{H})$ is called a spectral family. In what follows this notion is carried over to infinite dimensional Hilbert spaces. We start with

Proposition II.2.1: Let H be any Hilbert space. Let M_1, M_2 be two closed subspaces of H. Let P_1, P_2 be the projections from H onto M_1, M_2 resp. Then

$$M_1 \subseteq M_2$$
 if and only if $P_2P_1 = P_1$.

<u>Proof:</u> Let first $M_1 \subseteq M_2$. Then $P_1 f \in M_1$, $P_2 P_1 f = P_1 f$, $f \in H$. If conversely $P_2 P_1 = P_1$ we get for $f \in M_1$: $P_1 f = f$, $P_2 P_1 f = P_1 f = f$ and consequently $P_1 f = f \in M_2$.

From now on \mathcal{H} is again an arbitrary (possibly infinite dimensional) Hilbert space. We want to define the notion of a spectral family in \mathcal{H} :

<u>Definition II.2.1:</u> <u>Let there be given a projection</u> $E(\lambda)$ <u>in H for each</u> $\lambda \in \mathbb{R}$. <u>Let the</u> $E(\lambda)$, $\lambda \in \mathbb{R}$, have the following properties:

(II.2.1)
$$E(\lambda)E(\mu) = E(\min(\lambda,\mu))$$
,

(II.2.2)
$$E(\lambda+O)f = \lim_{\epsilon>O} E(\lambda+\epsilon)f$$

 $\epsilon>O$

exists for every $f \in H$ and every $\lambda \in IR$ and is equal to $E(\lambda)f$,

(II.2.3) $E(\lambda)f \rightarrow 0$, $f \in H$, $\lambda \rightarrow -\infty$,

(II.2.4) $E(\lambda)f \rightarrow f$, $f \in H$, $\lambda \rightarrow +\infty$.

Then the set $\{E(\lambda) | \lambda \in \mathbb{R}\}\$ is called a spectral family.

Proposition II.2.2: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Then $E(\lambda)E(\mu) = E(\mu)E(\lambda),$

 $\mu, \lambda \in \mathbb{R}$.

Proof: Follows from (II.2.1).

Definition II.2.2: Let $\{E(\lambda) | \lambda \in \mathbb{R}\}$ be a spectral family. Let $-\infty < a \le b < +\infty$, $\Delta = [a,b]$. Then we set

 $E(\Delta) = E(b)-E(a)$.

Proposition II.2.3: For a spectral family $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ the operator $E(\Delta)$ is always a projection. If Δ', Δ'' are two closed finite intervals with

then

$$E(\Delta')E(\Delta'') = O = E(\Delta')E(\Delta').$$

This is equivalent to

$$E(\Delta')H = M(\Delta') \perp M(\Delta') = E(\Delta')\mathcal{H}.$$

Proof: For f,g ∈ H we get

$$(E(\Delta)f,g) = (f,E(\Delta)g),$$

$$E(\Delta)E(\Delta) = E(b)^{2} + E(a)^{2} - 2E(a)E(b),$$

= $E(b) + E(a) - 2E(a),$
= $E(\Delta),$

where we have applied Proposition II.2.2 and (II.2.1). If $\Delta' = [a,b]$, $\Delta'' = [c,d]$ we can assume that $b \le c$. Then with (II.2.1)

$$E(\Delta')E(\Delta'') = (E(b)-E(a))(E(d)-E(c))$$

= $E(b) - E(a) - E(b) + E(a)$
= $O.$

With Proposition II.2.2 we get $E(\Delta')E(\Delta') = 0$.

Next we define the integral $\int \ f(\lambda) \, dE(\lambda)$ for continuous functions f.

<u>Proposition II.2.4:</u> Let $f:[a,b] \rightarrow \mathbb{C}$ be continuous. We set

$$\delta(\varepsilon) = \sup \left\{ S | |f(\lambda_1) - f(\lambda_2)| \le \varepsilon \text{ für } \lambda_1, \lambda_2 \in [a, b] \text{ mit } |\lambda_1 - \lambda_2| \le S \right\}$$

for
$$\varepsilon > 0$$
. Let $\mathbf{3}' = (\lambda_1', \dots, \lambda_{m+1}')$, $\mathbf{3}'' = (\lambda_1'', \dots, \lambda_{m+1}'')$ be two partitions of the interval $[a,b]$ with $a = \lambda_1' < \lambda_2' < \dots < \lambda_{m+1}'' = b$, $a = \lambda_1'' < \lambda_2'' < \dots < \lambda_{m+1}'' = b$,

$$\max_{1 \leq i \leq m} |\lambda_{i+1}^{i} - \lambda_{i}| \leq \delta(\epsilon),$$

$$\max_{1 \leq k \leq n} |\lambda_{k+1}^{i} - \lambda_{k}^{i}| \leq \delta(\epsilon).$$

If we set

$$T' = \sum_{i=1}^{m} f(\lambda_{i}^{*}) (E(\lambda_{i+1}^{!}) - E(\lambda_{i}^{!})),$$

$$T'' = \sum_{k=1}^{n} f(\lambda_{k}^{**}) (E(\lambda_{k+1}^{!}) - E(\lambda_{k}^{!}))$$

with points $\lambda_{i}^{*} \in [\lambda_{i}, \lambda_{i+1}], \lambda_{k}^{**} \in [\lambda_{k}, \lambda_{k+1}], \underline{\text{then}}$ $\|T' - T''\| \leq 2\varepsilon.$

<u>Proof:</u> Let \mathfrak{F}''' be the partition of [a,b] with the points $\lambda_1, \ldots, \lambda_{m+1}, \lambda_1', \ldots, \lambda_{m+1}$. Let us assume that in $[\lambda_k', \lambda_{k+1}']$ the points λ_k', λ_k' λ_k' λ_k'

$$\lambda_{k}^{\prime} = \lambda_{k_{1}} < \lambda_{k_{2}} < \dots < \lambda_{k_{p_{k}}} < \lambda_{k_{p_{k}+1}} = \lambda_{k+1}^{\prime}$$

belong to 3'" and that $\mu_{kl} \in [\lambda_{k_l}, \lambda_{k_{l+1}}]$, $1 \le k \le m$, $1 \le l \le p_k$; then we set

$$T^{"} = \sum_{k=1}^{m} \sum_{l=1}^{p_k} f(\mu_{kl}) (E(\lambda_{k_{l+1}}) - E(\lambda_{k_{l}})).$$

Evidently

$$T' = \sum_{k=1}^{m} \sum_{l=1}^{p_k} f(\lambda_k^*) (E(\lambda_{l+1}) - E(\lambda_{l}))$$

and

$$T'''-T' = \sum_{k=1}^{m} \sum_{l=1}^{p_k} (f(\mu_{kl})-f(\lambda_k^*)) \cdot (E(\lambda_{kl+1})-E(\lambda_{kl})).$$

Now we want to make use of a more general formula, namely: Let Δ_1,\ldots,Δ_q be closed intervals of the real axis with $\Delta_i\cap\Delta_j=\phi$ if $i \neq j$. Let $\epsilon_1,\ldots,\epsilon_q\in\mathbb{C}$. Then

$$(\text{II.2.5}) \parallel \overset{q}{\underset{j=1}{\Sigma}} \epsilon_{j} E(\Delta_{j}) f \parallel^{2} = \overset{q}{\underset{i,j=1}{\Sigma}} \epsilon_{i} \overline{\epsilon}_{j} \cdot (E(\Delta_{i}) f, E(\Delta_{j}) f),$$

(II.2.6)
$$= \sum_{j=1}^{q} |\epsilon_{j}|^{2} ||E(\Delta_{j})f||^{2},$$

(II. 2.7)
$$= \sum_{j=1}^{q} |\epsilon_{j}|^{2} (E(\Delta_{j}) f, f)$$

by proposition II.2.3; (II.2.7) immediately furnishes $\| \, (\mathtt{T'-T'''}) \, \mathrm{fl} \, ^2 \leq \, \epsilon^2 \| \, \mathrm{fl} \, ^2. \quad \text{The inequality} \, \| \, (\mathtt{T''-T'''}) \, \mathrm{fl} \, ^2 \leq \epsilon^2 \| \, \mathrm{fl} \, ^2 \, \text{ is proved analogously. Thus}$

$$||T'-T''|| \le ||T'-T'''|| + ||T'''-T''|| \le 2\varepsilon.$$

Proposition II.2.4 enables us to give the following definition:

Definition II.2.3: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Let $\Delta = [a,b]$, $\phi: \Delta \to \mathbb{C}$ be continuous. For n = 1,2,... let there be given closed intervals $\Delta_1^{(n)}, \ldots, \Delta_k^{(n)}$ with

$$\Delta = \bigcup_{j=1}^{k_n} \Delta_j^{(n)},$$

$$\Delta_{i}^{O(n)} \cap \Delta_{j}^{O(n)} = \phi, i \neq j, 1 \leq i, j \leq k_{n},$$

(II.2.8)
$$\max_{1 \le i \le k_n} |\Delta_i^{(n)}| \to 0 \text{ if } n \to \infty;$$

$$\frac{\text{let}}{\lambda_{i}^{(n)}} \in \Delta_{i}^{(n)}, \quad 1 \leq i \leq k_{n}. \quad \underline{\text{Then the operators}}$$

$$T_{n} = \sum_{i=1}^{k_{n}} \phi(\lambda_{i}^{(n)}) E(\Delta_{i}^{(n)})$$

converge in the norm of L(H,H) if $n \to \infty$. The limit does not depend on the choice of the sequence of partitions $\Delta_1^{(n)}, \ldots, \Delta_{k_n}^{(n)}$, provided (II.2.8) is fulfilled, and it does also not depend on the $\lambda_1^{(n)}$. It is denoted by

b
$$\int \varphi(\lambda) dE(\lambda) = \int \varphi(\lambda) dE(\lambda) = \varphi(E, \Delta).$$
a
$$\Delta$$

Let us consider the function $\alpha:\lambda\to (E(\lambda)f,f)$, $\lambda\in \mathbb{R}$, for fixed but arbitrary $f\in \mathcal{H}$. α only assumes real values and for $\lambda<\mu$ we get

$$\alpha(\mu) - \alpha(\lambda) = ((E(\mu) - E(\lambda))f, f)$$

$$= (E([\lambda, \mu])f, f)$$

$$= ||E([\lambda, \mu])f||^2 \ge 0.$$

Thus **x is** monotonically non decreasing and, in particular, it is of bounded variation. We also have

$$\alpha(\lambda) \rightarrow 0, \lambda \rightarrow -\infty,$$

$$\alpha(\lambda) \rightarrow \|f\|^2, \lambda \rightarrow +\infty.$$

We want to review now some facts on functions of bounded variation. Our reference is [RN, pp. 7]. Let I be a finite closed, open or halfopen interval. Let $f:I \to IR$ be a function. Then f is said to have bounded variation if there exists a finite number c such that

(II.2.9)
$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \le c$$

for every n-tuple (x_0, x_1, \ldots, x_n) with $x_i \in I$, $0 \le i \le n$, $x_0 < x_1 < \ldots < x_n$, $n = 1, 2, \ldots$. The infimum of all c for which (II.2.9) holds is called the total variation of f on I, shortly $T(I) = T_f(I)$. If $f: I \to \mathbb{C}$ is complex valued then f is said to have bounded variation if and only if the real and the imaginary part of f have bounded variation. Every real function $f: I \to IR$ having bounded variation can be decomposed into

$$(II.2.10) f = f_1 - f_2$$

where $f_i:I\to IR$ have bounded variation, i=1,2, and, moreover, are monotonically non decreasing on I. We can take $f_1(x)=T_f(I\cap[a,x])$, $x\in I$, $a=\inf\{\xi\mid\xi\in I\}$, $f_2(x)=T_f(I\cap[a,x])-f(x)$, $x\in I$. Of course, any bounded monotonically non decreasing $f:I\to IR$ has bounded variation. If I=[a,b], $\alpha:I\to IR$ is monotonically non decreasing and if $f:[a,b]\to IR$ is continuous, then the sums

$$\sum_{l=1}^{k} f(\xi_{l}^{(n)}) (\alpha(x_{l}^{(n)}) - \alpha(x_{l-1}^{(n)})),$$

$$a = x_0^{(n)} < x_1^{(n)} < \dots < x_{k_n}^{(n)} = b, \xi_1^{(n)} \in [x_{1-1}^{(n)}, x_1^{(n)}], 1 \le 1 \le k_n$$

tend to a limit if $n \to \infty$, provided $s(n) = \max_{1 \le 1 \le k} (x_1^{(n)} - x_{1-1}^{(n)})$

tends to 0 if $n \to \infty$. This limit turns out to be independent of the choice of the sequence of partitions $(x_0^{(n)}, \dots, x_k^{(n)})$ of [a,b]

and of the choice of the $\xi_1^{(n)} \in [x_{1-1}^{(n)}, x_1^{(n)}];$ it's designated by

If $\alpha:[a,b] \to \mathbb{R}$ has bounded variation and if $\alpha = \alpha_1^{-\alpha} - \alpha_2^{-\alpha}$ is decomposed as in (II.2.10) then we set

b
$$\int f(x) d\alpha(x) = \int f d\alpha = \int f d\alpha,$$
a
$$= \int f d\alpha = \int f d\alpha,$$
b
$$= \int f d\alpha = \int f d\alpha$$
a
$$= \int f d\alpha = \int f d\alpha$$
a

Let us remark that for α_1, α_2 we can also take $\frac{1}{2}(\alpha(x) + T_{\alpha}([a,x]))$, $\frac{1}{2}(T_{\alpha}([a,x]) - \alpha(x))$; these quantities are called the positive and the negative indefinite variation of α . A complex valued function $\alpha: I \to \mathbb{C}$ is said to have bounded variation if $\alpha_1 = \text{Re } \alpha$, $\alpha_2 = \text{Im } \alpha$ have bounded variation. If I = [a,b] and if $f:[a,b] \to IR$ is continuous we set

b
$$\int f(x) d\alpha(x) = \int f d\alpha = \int f d\alpha,$$
a
$$= \int f d\alpha_1 + i \int f d\alpha_2.$$

is said to have bounded variation on $[a,+\infty)$, $(-\infty,b]$, $(-\infty,+\infty)$ respectively if

(II.2.11)
$$T_{\alpha}([a,b]) < c$$
 for all b, $a < b < +\infty$,

(II.2.12)
$$T_{\alpha}([a,b]) < c$$
 for all a, $-\infty < a < b$,

(II.2.13)
$$T_{\alpha}([a,b]) < c$$
 for all a,b, $-\infty < a < b < +\infty$,

respectively. If $\alpha:[a,b] \to \mathbb{C}$ has bounded variation we also write

$$T_{\alpha}([a,b]) = \int_{a}^{b} [d\alpha(x)],$$

and consequently we set in the cases (II.2.11), (II.2.12), (II.2.13)

$$\int_{-\infty}^{+\infty} |d\alpha(x)| = \inf\{c | c > T_{\alpha}([a,b]) \forall a,b, -\infty < a < b < +\infty\}.$$

If $f: (-\infty, +\infty) \to \mathbb{R}$ is continuous and bounded, if $\alpha: (-\infty, +\infty) \to \mathbb{C}$ has bounded variation and if $\lim_{b\to +\infty} \int f \ d\alpha$ exists, then we set $\lim_{a\to -\infty} \int f \ d\alpha$

The integrals \int f d α , \int f d α are defined analogously. All these a $-\infty$ definitions can be carried over to complex valued functions f by considering Re f and Im f.

Now we study the function $(E(\lambda)f,g)$, $f,g \in H$ by means of the theory of functions of bounded variation.

Theorem II.2.1: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Then the function (E(.)f,g) has bounded variation on $(-\infty,+\infty)$ for every $f,g \in \mathcal{H}$. Moreover

$$\int_{-\infty}^{+\infty} |d(E(\lambda)f,g)| \le ||f|| \cdot ||g||.$$

If $\phi:\Delta \to \mathbb{C}$ is continuous on the closed interval $\Delta = [a,b]$, then

$$(\phi(E,\Delta)f,g) = \int \phi(\lambda)d(E(\lambda)f,g).$$

 Δ

Proof: We decompose Δ into

$$\Delta = \bigcup_{i=1}^{n} \Delta_{i}$$

with closed intervals Δ_i with $\Delta_j \cap \Delta_k = \phi$, $j \neq k$. Then

$$\sum_{i=1}^{n} | (E(\Delta_{i}) f, g) | = \sum_{i=1}^{n} | (E(\Delta_{i}) f, E(\Delta_{i}) g) |,$$

$$\leq \sum_{i=1}^{n} || E(\Delta_{i}) f || \cdot || E(\Delta_{i}) g ||$$

$$\leq \left\{ \sum_{i=1}^{n} || E(\Delta_{i}) f ||^{2} \right\}^{\frac{1}{2}} \cdot \left\{ \sum_{i=1}^{n} || E(\Delta_{i}) g ||^{2} \right\}^{\frac{1}{2}},$$

$$= \left\{ \sum_{i=1}^{n} || E(\Delta_{i}) f, f ||^{2} \right\}^{\frac{1}{2}} \cdot \left\{ \sum_{i=1}^{n} || E(\Delta_{i}) g, g ||^{2} \right\}^{\frac{1}{2}},$$

$$= || E(\Delta) f || \cdot || E(\Delta) g || \leq || f || \cdot || g ||.$$

Since Δ was arbitrary, the first part of our theorem is proved. As for the second part Δ is decomposed into closed intervals $\Delta_i^{(n)}$,

$$\Delta = \bigcup_{i=1}^{k} \Delta_{i}^{(n)},$$

for each $n \in \mathbb{N}$ with $\Delta_j^{(n)} \cap \Delta_k^{(n)} = \emptyset$, $j \neq k$, $1 \leq i, j \leq k_n$, and with $\lim_{n \to \infty} \max_{1 \leq i \leq k_n} |\Delta_i^{(n)}| = 0$. If $T_n = \sum_{i=1}^{n} \varphi(\lambda_i^{(n)}) E(\Delta_i^{(n)})$ with $\lambda_i^{(n)} \in \Delta_i^{(n)}$,

we get:

$$(T_n f, g) = \sum_{i=1}^{k} \varphi(\lambda_i^{(n)}) (E(\Delta_i^{(n)} f, g))$$

$$\rightarrow (\phi(E,\Delta)f,g) = \int \phi(\lambda)d(E(\lambda)f,g),$$

$$\Delta$$

 $n \to \infty$.

Theorem II.2.2: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Let Δ be a closed interval. Then

$$\|\varphi(E,\Delta)\| \leq \max_{\lambda \in \Delta} |\varphi(\lambda)|,$$

$$\|\varphi(E,\Delta)f\| \leq \max_{\lambda \in \Delta} |\varphi(\lambda)| \|E(\Delta)f\|$$

for any continuous function $\varphi:\Delta \to \mathbb{C}$.

<u>Proof:</u> The notations are chosen like in the proof of Theorem II.2.1. Then for $f \in H$

$$\|\mathbf{T}_{n}f\|^{2} = \sum_{i=1}^{k_{n}} |\varphi(\lambda_{i}^{(n)})|^{2} \|\mathbf{E}(\Delta_{i}^{(n)})f\|^{2},$$

$$\leq \max_{\lambda \in \Delta} |\varphi(\lambda)|^{2} \|\mathbf{E}(\Delta)f\|^{2}.$$

Theorem II.2.3: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Let Δ be a closed interval. Let $\phi: \Delta \to \mathbb{C}$ be a continuous function. Then

$$\varphi(E,\Delta)^* = \overline{\varphi}(E,\Delta),$$

where $\overline{\phi}$ is defined by $\overline{\phi}(\lambda) = \overline{\phi(\lambda)}$, $\lambda \in \Delta$.

Proof: We have for $f,g \in H$

$$\begin{aligned} (\phi(E,\Delta)f,g) &= \int \phi(\lambda)d(E(\lambda)f,g), \\ \Delta &= \int \phi(\lambda)d(f,E(\lambda)g), \\ \Delta &= \int \phi(\lambda)d(E(\lambda)g,f), \end{aligned}$$

$$= \int_{\overline{\Phi}(\lambda)} \overline{\Phi}(\lambda) d(E(\lambda)g,f),$$

$$= \overline{(\overline{\Phi}(E,\Delta)g,f)},$$

$$= (f,\overline{\Phi}(E,\Delta)g).$$

Theorem II.2.4: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family, let $\varphi: \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Then

b
lim
$$\int \varphi(\lambda) dE(\lambda) f$$
a \rightarrow \infty, a
b \rightarrow +\infty

exists for every f & H and is denoted by

$$\varphi(E)f = \int_{-\infty}^{+\infty} \varphi(\lambda)dE(\lambda)f.$$

Moreover, $\phi(E)$ is in L(H,H) and

$$\| \varphi(E) \| \le \sup_{\lambda \in IR} | \varphi(\lambda) |.$$

If additionally $\varphi(\lambda) \rightarrow 0$ for $\lambda \rightarrow +\infty$ and for $\lambda \rightarrow -\infty$, then

b
$$\| \int \varphi(\lambda) dE(\lambda) - \varphi(E) \| \to 0$$

for $a \rightarrow -\infty$, $b \rightarrow +\infty$.

Proof: Let a' <a <b <b'. Then

$$= \iint_{a'} \phi(\lambda) dE(\lambda) f + \int_{b'} \phi(\lambda) dE(\lambda) f \|,$$

$$\leq \sup_{\lambda \in IR} |\phi(\lambda)| (||(E(a)-E(a'))f|| + ||(E(b')-E(b))f||)$$

$$\leq \sup_{\lambda \in IR} |\varphi(\lambda)| ((E(a)-E(a'))f,f))^{\frac{1}{2}} +$$

+ sup
$$|\varphi(\lambda)|(((E(b')-E(b))f,f))^{\frac{1}{2}}$$
, $\lambda \in \mathbb{IR}$

$$\leq \sup_{\lambda \in \mathbb{IR}} |\varphi(\lambda)| (E(a)f,f)^{\frac{1}{2}} + \sup_{\lambda \in \mathbb{IR}} |\varphi(\lambda)| ((I-E(b))f,f)^{\frac{1}{2}},$$

where we have used the second inequality in Theorem II.2.2 and the monotonicity of $(E(\lambda)f,f)$. Letting a tend to $-\infty$ and b tend to $+\infty$ we see that

b

$$\lim_{a\to-\infty} \int \varphi(\lambda) dE(\lambda) f$$

 $a\to+\infty$

exists. The second inequality in Theorem II.2.2 also shows that $\phi(E) \in L(\mathcal{H},\mathcal{H}) \text{ and } \|\phi(E)\| \leq \sup_{\lambda \in IR} |\phi(\lambda)|. \text{ As for the last asser-} \\ \lambda \in IR \\ \text{tion the preceding calculations show that for any } \epsilon > 0$

if a' <a <b <b' and if -a,b are sufficiently large.

The formula for $\|\mathbf{T}_n \mathbf{f}\|^2$ in the proof of Theorem II.2.2 shows that

(II. 2.14)
$$\| \int_{a}^{b} \varphi(\lambda) dE(\lambda) f \|^{2} = \int_{a}^{b} |\varphi(\lambda)|^{2} d(E(\lambda) f, f)$$

for any $f \in H$, any a,b, a < b, and any continuous $\phi:[a,b] \to \mathbb{C}$. If $\phi:\mathbb{R} \to \mathbb{C}$ is continuous and bounded we get therefore

(II. 2.15)
$$\| \int_{-\infty}^{+\infty} \varphi(\lambda) dE(\lambda) f \|^2 = \int_{-\infty}^{+\infty} |\varphi(\lambda)|^2 d(E(\lambda)f, f).$$

Theorem II.2.5: Let $\Delta_1 = [a,b]$, $\Delta_2 = [c,d]$ be two closed intervals with $\Delta_1 \cap \Delta_2 = \emptyset$. Let

$$\varphi:\Delta_1 \to \mathbb{C}$$

$$\psi:\Delta_2\to\mathbb{C}$$

be continuous. Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Then $\phi(E, \Delta_1) \psi(E, \Delta_2) = 0.$

<u>Proof:</u> Taking two Riemannian sums approximating $\phi(E, \Delta_1)$ and $\psi(E, \Delta_2)$ and using Proposition II.2.3 our theorem follows.

Theorem II.2.6: Let $\psi, \phi: \Delta \to \mathbb{C}$ be continuous on the closed interval $\Delta = [a,b]$. Then

$$\varphi(E,\Delta)\psi(E,\Delta) = \varphi\psi(E,\Delta)$$
.

<u>Proof:</u> Taking Riemannian sums as in the proof of Theorem II.2.1 we get

$$k_{n} \sum_{\substack{j=1 \\ k}} \phi(\lambda_{i}^{(n)}) E(\Delta_{i}^{(n)}) \sum_{\substack{j=1 \\ j=1}} \psi(\lambda_{j}^{(n)}) E(\Delta_{j}^{(n)}) = \sum_{\substack{i=1 \\ i=1}} \phi(\lambda_{i}^{(n)}) \psi(\lambda_{i}^{(n)}) E(\Delta_{i}^{(n)}),$$

which proves our assertion.

§ 3. Stieltjes's Inversion Formula.

Further Properties of Functions of Bounded Variation

Let $\rho: \mathbb{R} \to \mathbb{C}$ be a function having bounded variation on $(-\infty, +\infty)$. Then it follows from (II.2.9) and (II.2.13) that ρ is bounded. As it is proved in [RN,], for each $\lambda \in \mathbb{R}$ ρ has a limit from the right

$$\rho(\lambda+0) = \lim_{\epsilon \to 0, \\ \epsilon > 0} \rho(\lambda+\epsilon)$$

and a limit from the left

$$\rho (\lambda - O) = \lim_{\varepsilon \to O, \\ \varepsilon > O} \rho (\lambda - \varepsilon).$$

If for example ρ has jumps in $\lambda_1, \dots, \lambda_n$ with $\lambda_1 < \dots < \lambda_n$ but is constant otherwise we get with

$$\rho_{k} = \rho (\lambda_{k} + 0) - \rho (\lambda_{k} - 0),$$

 $z \in \mathbb{C}$, Im $z \neq 0$,

$$F(z) = \sum_{k=1}^{n} \frac{\rho_k}{\lambda_k - z}$$

the formula

(II. 3. 1)
$$-\frac{1}{2\pi i} \int_{\Gamma_{\varepsilon}(\lambda^{(1)}, \lambda^{(2)})} F(z) dz = \sum_{\lambda^{(1)} < \lambda_{k} < \lambda^{(2)}} \rho_{k}$$

$$= \rho(\lambda^{(2)}) - \rho(\lambda^{(1)});$$

here $\Gamma_{\epsilon}(\lambda^{(1)},\lambda^{(2)})$, $0 < \epsilon$, $\lambda^{(1)} < \lambda^{(2)}$, $\lambda^{(i)} \neq \lambda_{j}$, i = 1,2, j = 1,......,n, is a curve as described in the figure to follow:

 $\Gamma_{\epsilon}(\lambda^{(1)},\lambda^{(2)})$ is run through in the positive sense. (II.3.1) is then a simple consequence of the residuum formula. If we let ϵ tend to 0 the contributions of the integration over the perpendicular parts of $\Gamma_{\epsilon}(\lambda^{(1)},\lambda^{(2)})$ tend to 0 and we end with

$$\lim_{\varepsilon \to 0, \atop \varepsilon > 0} \frac{1}{2\pi i} \begin{pmatrix} \lambda & (2) & \lambda & (2) \\ \int_{\lambda} (1) & F(\lambda + i\varepsilon) d\lambda & -\int_{\lambda} (1) & F(\lambda - i\varepsilon) d\lambda \end{pmatrix}$$

$$= \rho(\lambda^{(2)}) - \rho(\lambda^{(1)}).$$

The formula to follow is generalization of this simple situation.

Theorem II.3.1: $\rho \text{ is as described in the beginning of this} \\ \frac{+\infty}{\rho} \frac{1}{\lambda-z} d\rho(\lambda) \text{ exists for Im } z \neq 0 \text{ and the function F defined by}$

$$F(z) = \int_{-\infty}^{+\infty} \frac{1}{\lambda - z} d\rho(\lambda), \text{ Im } z \neq 0,$$

is holomorphic. Moreover,

$$|F(z)| \leq \frac{1}{|Im z|} \int_{-\infty}^{+\infty} |d\rho(\lambda)|.$$

If $-\infty < \lambda_1 < \lambda_2 < +\infty$, then Stieltjes's inversion formula holds:

$$\frac{1}{2}(\rho(\lambda_{2}+0)+\rho(\lambda_{2}-0)) - \frac{1}{2}(\rho(\lambda_{1}+0)+\rho(\lambda_{1}-0))$$

$$= \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\lambda_{1}}^{\lambda_{2}} (F(\lambda+i\varepsilon)-F(\lambda-i\varepsilon)) d\lambda.$$

Proof: Let

$$a = \lambda_1 < \lambda_2 < \dots < \lambda_n < \lambda_{n+1} = b.$$

Then for Im $z \neq 0$, $\epsilon > 0$

$$| \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z} (\rho(\lambda_{i+1})-\rho(\lambda_{i})) - \int_{a}^{b} \frac{1}{\lambda-z} d\rho(\lambda) |$$

$$\leq | \sum_{i=1}^{n} \int_{\lambda_{i}}^{\lambda_{i}+1} (\frac{1}{\lambda_{i}-z}-\frac{1}{\lambda-z}) d\rho(\lambda) |$$

(II.3.2)
$$\leq \varepsilon \int |d\rho(\lambda)|$$
,

provided $\delta = \max_{1 \le i \le n} (\lambda_{i+1}^{-\lambda})$ is small enough. Strictly spoken, this estimate only holds if ρ is real valued and monotonically non decreasing, but (II.2.10) shows the validity of this estimate in the general case too. Since we can choose a fixed δ for any compact subset of $\{z \mid \text{Im } z \neq 0\}$ such that (II.3.2) holds for

all z in this compact subset we have shown that

$$\int_{a}^{b} \frac{1}{\lambda - z} d\rho (\lambda)$$

is holomorphic in {z|Im z ±0}. Since $\lim_{\lambda \to +\infty} \frac{1}{\lambda - z} = \lim_{\lambda \to -\infty} \frac{1}{\lambda - z} = 0$, Im z ±0, it is easily shown that $\int_{-\infty}^{+\infty} \frac{1}{\lambda - z} d\rho(\lambda)$ exists.

Moreover, the convergence is uniform on every compact subset of $\{z \mid \text{Im } \mathbf{Z} \neq 0\}$. Thus $F(z) = \int_{-\infty}^{+\infty} \frac{1}{\lambda - z} d\rho(\lambda)$ is holomorphic on

 $\{z \mid \text{Im } z \neq 0\}$. We have for $\epsilon > 0$, $\lambda_1 < \lambda_2$:

$$F(\lambda + i\epsilon) - F(\lambda - i\epsilon) = \int_{-\infty}^{+\infty} \left(\frac{1}{\mu - (\lambda + i\epsilon)} - \frac{1}{\mu - (\lambda - i\epsilon)}\right) d\rho(\mu),$$

$$= \int_{-\infty}^{\infty} \frac{2i\epsilon}{(\mu - \lambda)^2 + \epsilon^2} d\rho(\mu),$$

$$D = \frac{1}{2\pi i} \int_{\lambda}^{\lambda_{2}} (F(\lambda + i\epsilon) - F(\lambda - i\epsilon)) d\lambda =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\pi} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\varepsilon}{(\lambda - \mu)^{2} + \varepsilon^{2}} d\lambda d\rho(\mu),$$

since the reader may easily verify by taking Riemannian sums and observing that $1/((\lambda-\mu)^2+\epsilon^2)\to 0$, if $\mu\to +\infty$, and, if $\mu\to -\infty$, that the order of integration can be altered. The inner integral gives

$$k(\mu; \varepsilon) = k(\mu; \lambda_1, \lambda_2, \varepsilon) = \frac{1}{\pi} [arc \tan \frac{\lambda - \mu}{\varepsilon}]_{\lambda_1}^{\lambda_2}.$$

We now study the properties of $k(\mu; \lambda_1, \lambda_2, \epsilon)$. We have

(II.3.3)
$$0 < k(\mu; \lambda_1, \lambda_2, \epsilon) < 1$$
,

- (II. 3.4) $k(\mu; \lambda_1, \lambda_2, \epsilon) \rightarrow 0$, $\epsilon \rightarrow 0$, uniformly on $\mu \leq \lambda_1 \eta$, and uniformly on $\mu \geq \lambda_2 + \eta$, if $\eta > 0$ is any fixed number,
- (II. 3.5) $k(\mu; \lambda_1, \lambda_2, \epsilon) \rightarrow 1$, $\epsilon \rightarrow 0$, uniformly on $\mu \in [\lambda_1 + \eta, \lambda_2 - \eta]$ if $\eta > 0$ is any fixed number $< \lambda_2 - \lambda_1$.

If $f:[a,b] \to \mathbb{C}$ is continuous and if $a < c \le b$, then

(II. 3. 6)
$$\int_{a}^{c-0} f(\lambda) d\rho(\lambda) := \lim_{\delta \downarrow 0} \int_{a}^{c-\delta} f(\lambda) d\rho(\lambda)$$

exists. This is seen as follows: We have

$$c-\delta''$$

$$f(\lambda)d\rho(\lambda) - f f(\lambda)d\rho(\lambda)$$

$$a$$

$$c-\delta''$$

$$= f f(\lambda)d\rho(\lambda)$$

$$c-\delta'$$

$$c-\delta''$$

$$= f (f(\lambda)-f(c))d\rho(\lambda) + f(c)(\rho(c-\delta'')-\rho(c-\delta'')),$$

 $0<\delta$ '' $<\delta$ ' < c-a. Since ρ has a limit from the left in c and since f is continuous we arrive at our assertion. Similarly it is shown that

exists if $a \le c < b$. Since we have the relation

(II. 3. 8)
$$\int_{a}^{b} f(\lambda) d\rho(\lambda) = \int_{a}^{c-\delta} f(\lambda) d\rho(\lambda) + \int_{c-\delta}^{c+\delta} f(\lambda) d\rho(\lambda) + \int_{c+\delta}^{b} f(\lambda) d\rho(\lambda)$$

for $c \in (a,b)$, $0 < \delta < \min\{c-a,b-c\}$ as is easily seen by going over to Riemannian sums, we arrive at

here we have to take into consideration that

(II. 3. 10)
$$\lim_{\delta \to 0} \int_{c-\delta}^{c+\delta} f(\lambda) d\rho(\lambda) = \lim_{\delta \to 0} \{f(c)(\rho(c+\delta) - \rho(c-\delta)) + \delta + 0\}$$
$$-\frac{c+\delta}{\delta + 0}$$
$$+ \int_{c-\delta}^{c+\delta} (f(\lambda) - f(c)) d\rho(\lambda) \},$$
$$-\frac{c+\delta}{\delta + 0}$$
$$= f(c)(\rho(c+\delta) - \rho(c-\delta)).$$

Thus we get

(II. 3. 11)
$$D = \int_{-\infty}^{\lambda_1 - \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_1 - \eta} k(\mu; \epsilon) d\rho(\mu)$$

$$= \int_{-\infty}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_2 - \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_2 - \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_2 - \eta} k(\mu; \epsilon) d\rho(\mu)$$

We set $D^* = D - \{\frac{1}{2}(\rho(\lambda_2 + 0) + \rho(\lambda_2 - 0)) - \frac{1}{2}(\rho(\lambda_1 + 0) + \rho(\lambda_1 - 0))\}$. We have

(II. 3. 12)
$$k(\lambda_1; \varepsilon) = \frac{1}{\pi} \arctan \frac{\lambda_2 - \lambda_1}{\varepsilon} \rightarrow \frac{1}{2}, \varepsilon \rightarrow 0,$$

(II.3.13)
$$k(\lambda_2; \varepsilon) = -\frac{1}{\pi} \arctan \frac{\lambda_1 - \lambda_2}{\varepsilon} \rightarrow \frac{1}{2}, \ \varepsilon \rightarrow 0.$$

This yields

$$D' = \int_{-\infty}^{\lambda_1 - \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_1 - \eta}^{\lambda_1 - Q} k(\mu; \epsilon) d\rho(\mu) + \int_{-\infty}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_1 + Q}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_1 + Q}^{\lambda_1 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_1 + Q}^{\lambda_2 - \eta} k(\mu; \epsilon) d\rho(\mu) + \rho(\lambda_1 - Q)) + \int_{\lambda_1 + \eta}^{\lambda_2 - \eta} (k(\mu; \epsilon) - 1) d\rho(\mu) + \rho(\lambda_2 - \eta) - \rho(\lambda_1 + \eta) + \int_{\lambda_1 + \eta}^{\lambda_2 - Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + \eta} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 - \eta}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu; \epsilon) d\rho(\mu) + \int_{\lambda_2 + Q}^{\lambda_2 + Q} k(\mu;$$

$$+ \left(\frac{1}{\pi} \arctan \frac{\lambda_{2}^{-\lambda_{1}}}{\epsilon} - \frac{1}{2}\right) \left(\rho(\lambda_{2}^{+0}) - \rho(\lambda_{2}^{-0})\right) +$$

$$+ \frac{1}{2} (\rho(\lambda_{2}^{+0}) - \rho(\lambda_{2}^{-0})) + \int_{\lambda_{2}^{+\eta}}^{+\infty} k(\mu; \epsilon) d\rho(\mu) -$$

$$- \frac{1}{2} \rho(\lambda_{2}^{+0}) - \frac{1}{2} \rho(\lambda_{2}^{-0}) + \frac{1}{2} \rho(\lambda_{1}^{+0}) + \frac{1}{2} \rho(\lambda_{1}^{-0}).$$

We set

$$T(\eta) = \frac{1}{2} (\rho (\lambda_1 + 0) - \rho (\lambda_1 - 0)) + \rho (\lambda_2 - \eta) - \rho (\lambda_1 + \eta) + \frac{1}{2} (\rho (\lambda_2 + 0) - \rho (\lambda_2 - 0)) - \frac{1}{2} \rho (\lambda_2 + 0) - \frac{1}{2} \rho (\lambda_2 - 0) + \frac{1}{2} \rho (\lambda_1 + 0) + \frac{1}{2} \rho (\lambda_1 - 0).$$

Clearly $T(\eta) \rightarrow 0$ if $\eta \rightarrow 0$. Let us set

$$D' = S(\eta; \varepsilon) + T(\eta).$$

The first integral and the last one tend to 0 if $\eta > 0$ is fixed and ϵ tends to 0; this follows from (II.3.4). (II.3.12) yields that

$$(\frac{1}{\pi} \operatorname{arc tan} \frac{\lambda_2^{-\lambda_1}}{\varepsilon} - \frac{1}{2}) [(\rho(\lambda_1 + 0) - \rho(\lambda_1 - 0)) + (\rho(\lambda_2 + 0) - \rho(\lambda_2 - 0))]$$

tends to 0 if $\epsilon \to 0$. The fourth integral tends to 0 if $\eta > 0$ is fixed and ϵ tends to 0; this follows from (II.3.5). The sum of all these terms is denoted by $S_1(\eta;\epsilon)$. The function $k(\mu;\epsilon)$ is continuous on $[\lambda_1 - \eta_0, \lambda_1]$ for any $\eta_0 > 0$; moreover $k(\mu;\epsilon)$ is uniformly bounded by 0 from below and by 1 from above (cf. (II.3.3)). Considering the integral

$$\lambda_{1}^{-0}$$

$$\int_{\lambda_{1}^{-\eta}} k(\mu; \varepsilon) d\rho(\mu), \quad 0 < \eta \leq \eta_{0},$$

we can restrict ourselves to the case that ρ is real valued and monotonically non decreasing (cf. (II.2.10)). Let $\delta < \eta \le \eta_0$ and let $\lambda_1 - \eta = x_0 < x_1 < \dots < x_n = \lambda_1 - \delta$; we obtain

$$\sum_{l=1}^{n} k(x_{1}; \epsilon) (\rho(x_{1}) - \rho(x_{1-1})$$

$$\leq \rho (\lambda_1 - \delta) - \rho (\lambda_1 - \eta).$$

Choosing an equidistant partition of $[\lambda_1 - \eta, \lambda_1 - \delta]$ and letting n tend to ∞ we arrive at

$$\begin{array}{ll}
\lambda_{1}^{-\delta} \\
\int k(\mu; \varepsilon) d\rho(\mu) \leq \rho(\lambda_{1}^{-\delta}) - \rho(\lambda_{1}^{-\eta}), \\
\lambda_{1}^{-\eta}
\end{array}$$

$$\begin{array}{ll} \lambda_1^{-O} & & \\ \int & k(\mu; \epsilon) d\rho(\mu) & \leq \rho(\lambda_1^{-O}) - \rho(\lambda_1^{-\eta}). \\ \lambda_1^{-\eta} & & \end{array}$$

The integrals
$$\int\limits_{\lambda_1+0}^{\lambda_1+\eta} k(\mu;\epsilon) d\rho(\mu)$$
, $\int\limits_{\lambda_2-\eta} k(\mu;\epsilon) d\rho(\mu)$,

 $^{\lambda}2^{+\eta}$ f $_{k}(\mu;\epsilon)d\rho(\mu)$ can be treated analogously. Summing up all $^{\lambda}2^{+0}$

these four integrals we get a term $S_2(\eta;\epsilon)$ whose absolute value can be estimated by quantity $\widetilde{S}_2(\eta)$ with $\widetilde{S}_2(\eta) \to 0$, $\eta \to 0$. Thus

$$D' = S_1(\eta; \varepsilon) + S_2(\eta; \varepsilon) + T(\eta).$$

Let $\gamma > 0$. Fixing an $\eta_0 > 0$ such that $|T(\eta)| < \gamma/3$, $|\widetilde{S}_2(\eta)| < \gamma/3$ and then an $\varepsilon_0 > 0$ with $|S_1(\eta; \varepsilon_0)| < \gamma/3$ we obtain

$$|D^{1}| < \gamma$$
,

provided ϵ is sufficiently small, $\epsilon \leq \epsilon_{_{\hbox{\scriptsize O}}}.$ This proves our theorem.

We deal a little bit more with functions $\rho: \mathbb{R} \to \mathbb{C}$ having bounded variation on $(-\infty, +\infty)$. It immediately follows from the decomposition (II.2.10) that

$$\rho(-\infty) = \lim_{\lambda \to -\infty} \rho(\lambda)$$

exists. Also the existence of $\rho(\lambda+0)$, $\rho(\lambda-0)$, which has been mentioned already, can be concluded from (II.2.10). Moreover it is shown in [N, ϕ . 245] that ρ is discontinuous in at most countably many λ . For the proof of the theorem to follow we refer to [N, ϕ . 250].

Theorem II.3.2 (Helly's selection principle): Let $\rho_n: \mathbb{R} \to \mathbb{C}$, $n = 1, 2, \ldots$, be a sequence of functions having bounded variation on $(-\infty, +\infty)$. We assume that

$$\left| \begin{array}{ccc} \rho_n(\lambda) \, \right| & \leq M, \\ \\ V(\rho_n) & = \int \limits_{-\infty}^{+\infty} \left| d\rho_n(\lambda) \, \right| & \leq M, & n \in \mathbb{I} N. \\ \end{array}$$

Then there is a subsequence $\{\rho_n\}$ of $\{\rho_n\}$ and a function $\rho: \mathbb{R} \to \mathbb{C}$ having bounded variation $(-\infty, +\infty)$ such that

$$|\rho(\lambda)| \leq M,$$

$$+\infty$$

$$\int |d\rho(\lambda)| \leq M,$$

$$-\infty$$

$$\rho_{n}(\lambda) \rightarrow \rho(\lambda), j \rightarrow \infty, \lambda \in \mathbb{R}.$$

The next theorem describes a further property of functions of bounded variation.

Theorem II.3.3 (Helly's convergence theorem): Let $f:\mathbb{R} \to \mathbb{C}$ be continuous, let

$$f(\lambda) \rightarrow 0, \lambda \rightarrow \pm \infty$$
.

Let $\rho_n: \mathbb{R} \to \mathbb{C}$, $n = 1, 2, \ldots$ be a sequence of functions having bounded variation on $(-\infty, +\infty)$. We assume that

$$\rho_{n}(\lambda) \rightarrow \rho(\lambda), \quad n \rightarrow \infty, \quad \lambda \in \mathbb{R},$$

$$+\infty$$

$$\int_{-\infty} |d\rho_{n}(\lambda)| \leq M.$$

Then also ρ is of bounded variation on $(-\infty, +\infty)$ and $\int_{-\infty}^{+\infty} |d\rho(\lambda)| \le M$.

Moreover

<u>Proof:</u> The first part of our theorem is an easy consequence of the definition of the total variation of a function. As for the second part we choose $\lambda_1, \ldots, \lambda_{m+1}$, $m \in \mathbb{N}$, such that

$$-\infty < \lambda_{1} < \lambda_{2} < \dots < \lambda_{m+1} < +\infty,$$

$$|f(\lambda)| \leq \varepsilon, \quad \lambda \leq \lambda_{1}, \quad \lambda \geq \lambda_{m+1},$$

$$|f(\lambda) - f(\lambda_{j})| \leq \varepsilon, \quad \lambda_{j} \leq \lambda \leq \lambda_{j+1}, \quad j = 1, \dots, m,$$

where ϵ is any given positive number. Then

$$\delta = \left| \int_{-\infty}^{+\infty} f(\lambda) d\rho(\lambda) - \sum_{j=1}^{m} f(\lambda_{j}) \cdot (\rho(\lambda_{j+1}) - \rho(\lambda_{j})) \right|,$$

$$\leq \varepsilon \int_{-\infty}^{+\infty} |d\rho(\lambda)| \leq \varepsilon M,$$

$$\delta_{n} = \left| \int_{-\infty}^{+\infty} f(\lambda) d\rho_{n}(\lambda) - \sum_{j=1}^{m} f(\lambda_{j}) \cdot (\rho_{n}(\lambda_{j+1}) - \rho_{n}(\lambda_{j})) \right|,$$

$$\leq \varepsilon \int_{-\infty}^{+\infty} |d\rho_{n}(\lambda)| \leq \varepsilon M.$$

From this it follows that

$$\begin{vmatrix}
+\infty \\
j \\
-\infty
\end{vmatrix} f(\lambda) d\rho(\lambda) - \int_{-\infty}^{+\infty} f(\lambda) d\rho_{n}(\lambda) | \leq \\
\leq | \sum_{j=1}^{m} f(\lambda_{j}) [(\rho(\lambda_{j+1}) - \rho(\lambda_{j})) - (\rho_{n}(\lambda_{j+1}) - \rho_{n}(\lambda_{j}))] | + 2\varepsilon M.$$

If n is sufficiently large, say $n \geq n_{_{\hbox{\scriptsize O}}}$, the absolute value of the last sum becomes < $\epsilon M.$ Our theorem is proved.

Definition II.3.1: Let M > O. Then Γ (M) denotes the set of all functions $\rho: \mathbb{R} \to \mathbb{C}$ having bounded variation on $(-\infty, +\infty)$ and the following additional properties:

$$\begin{array}{ll}
+\infty \\
\int |d\rho(\lambda)| \leq M, \\
-\infty \\
\rho(-\infty) = O, \\
\rho(\lambda+O) = \lim_{\epsilon \to O} \rho(\lambda+\epsilon) = \rho(\lambda).
\end{array}$$

Proposition II.3.1: Let $\rho: \mathbb{R} \to \mathbb{C}$ have bounded variation on $(-\infty, +\infty)$. Let $+\infty$ $M \geq \int |d\rho(\lambda)|.$

Then the function $\rho^*: \mathbb{R} \to \mathbb{C}$, defined by $\rho^*(\lambda) = \rho(\lambda+0) - \rho(-\infty)$ is contained in $\Gamma(M)$. If $f: \mathbb{R} \to \mathbb{C}$ is continuous and if $f(\lambda) \to 0$, $\lambda \to \pm \infty$, then

$$\int_{-\infty}^{+\infty} f(\lambda) d\rho(\lambda) = \int_{-\infty}^{+\infty} f(\lambda) d\rho^*(\lambda).$$

<u>Proof:</u> First we have to show that $\int_{-\infty}^{+\infty} |d\rho^*(\lambda)| \le M$. Let us take $\lambda_1, \ldots, \lambda_{m+1}, m \in \mathbb{N}$, such that

$$\lambda_1 + \epsilon < \lambda_2 + \epsilon < \dots < \lambda_{m+1} + \epsilon_r$$

where $\boldsymbol{\epsilon}$ is any positive number. Then

$$\sum_{j=1}^{m} |\rho^*(\lambda_{j+1}) - \rho^*(\lambda_{j})| =
= \lim_{\epsilon \to 0} \sum_{j=1}^{m} |\rho(\lambda_{j+1} + \epsilon) - \rho(\lambda_{j} + \epsilon)| \le M.$$

Thus ρ^* has bounded variation $(-\infty, +\infty)$ and $\int_{-\infty}^{+\infty} |d\rho^*(\lambda)| \le M$. Consequently $\rho^*(\lambda + 0)$ is well defined for any $\lambda \in \mathbb{R}$. Since ρ is discontinuous in at most countably many points we can choose a sequence $\{a_{ij}\}$ with

$$a_{v} > 0$$
, $v \in \mathbb{N}$, $a_{v} \to 0$, $v \to \infty$,
 ρ is continuous in a_{v} , $v \in \mathbb{N}$.

Then
$$\rho^*(\lambda+0) = \lim_{\nu \to \infty} \rho^*(\lambda+a_{\nu}) = \lim_{\nu \to \infty} \rho(\lambda+a_{\nu}+0) - \rho(-\infty) = \lim_{\nu \to \infty} \rho(\lambda+a_{\nu}) - \rho(-\infty) = \rho^*(\lambda)$$
. A similar argument shows that $\rho^*(-\infty) = 0$. Thus $\rho^*\in\Gamma(M)$. Let $\epsilon^*>0$. m,λ_j,ϵ_0 are chosen in such a way that $|f(\lambda)| \le \epsilon^*$, $\lambda \le \lambda_1$, $|f(\lambda)| \le \epsilon^*$, $\lambda \ge \lambda_{m+1}$, $|f(\lambda)-f(\lambda_j)| \le \epsilon^*$, $\lambda_j \le \lambda_j \le \lambda_{j+1}$, $\lambda_j + \epsilon \le \lambda_j \le \lambda_{j+1} + \epsilon$, $0 < \epsilon \le \epsilon_0$. Then

$$\begin{split} & | \int_{-\infty}^{+\infty} f(\lambda) d\rho^*(\lambda) - \int_{-\infty}^{+\infty} f(\lambda) d\rho(\lambda) | = \\ & = | \int_{-\infty}^{+\infty} f(\lambda) d\rho^*(\lambda) - \sum_{j=1}^{m} f(\lambda_j) \cdot (\rho^*(\lambda_{j+1}) - \rho^*(\lambda_j)) \\ & + \sum_{j=1}^{m} [f(\lambda_j) (\rho^*(\lambda_{j+1}) - \rho^*(\lambda_j)) - f(\lambda_j + \epsilon) (\rho(\lambda_{j+1} + \epsilon) - \rho(\lambda_j + \epsilon))] + \\ & + \sum_{j=1}^{m} f(\lambda_j + \epsilon) (\rho(\lambda_{j+1} + \epsilon) - \rho(\lambda_j + \epsilon)) - \int_{-\infty}^{+\infty} f(\lambda) d\rho(\lambda) | \\ & + \int_{j=1}^{m} f(\lambda_j + \epsilon) (\rho(\lambda_{j+1} + \epsilon) - \rho(\lambda_j + \epsilon)) - \int_{-\infty}^{+\infty} f(\lambda_j + \epsilon) (\rho(\lambda_j + \epsilon)) | - \int_{-\infty}^{+\infty} f(\lambda_j + \epsilon) (\rho(\lambda_j + \epsilon)) | - \int_{-\infty}^{+\infty} f(\lambda_j + \epsilon) (\rho(\lambda_j + \epsilon) - \rho(\lambda_j + \epsilon)) | - \int_{-\infty}^{+\infty} f(\lambda_j + \epsilon) (\rho(\lambda_j + \epsilon) - \rho(\lambda_j + \epsilon)) | - \int_{-\infty}^{+\infty} f(\lambda_j + \epsilon) | - \int_{-\infty}^{+\infty} f$$

 $O<\epsilon \leq \epsilon_{\mbox{\scriptsize O}}$. Making ϵ sufficiently small we arrive at the assertion.

For practical reasons we give

Definition II.3.2: By $\Gamma^*(M)$ we denote the set of all holomorphic functions F on Im z $\neq 0$ which admit a representation

$$F(z) = \int_{-\infty}^{+\infty} \frac{d\rho(\lambda)}{\lambda - z}, \text{ Im } z \neq 0,$$

where ρ is some element from $\Gamma(M)$.

We now show that ρ is determined uniquely by F.

Theorem II. 3.4: Let $\rho_1, \rho_2 \in \Gamma(M)$ and let

$$\int_{-\infty}^{+\infty} \frac{d\rho_1(\lambda)}{\lambda - z} = \int_{-\infty}^{+\infty} \frac{d\rho_2(\lambda)}{\lambda - z}, \text{ Im } z \neq 0.$$

Then $\rho_1(\lambda) = \rho_2(\lambda)$, $\lambda \in \mathbb{R}$.

<u>Proof:</u> For μ , $\lambda \in \mathbb{R}$, $\mu < \lambda$, we get by Theorem II.3.1 (Stieltjes inversion formula)

$$\begin{split} &\frac{1}{2}(\rho_2(\lambda+0)+\rho_2(\lambda-0)) - \frac{1}{2}(\rho_2(\mu+0)+\rho_2(\mu-0)) = \\ &= \frac{1}{2}(\rho_1(\lambda+0)+\rho_1(\lambda-0)) - \frac{1}{2}(\rho_1(\mu+0)+\rho_1(\mu-0)). \end{split}$$

Since ρ_1, ρ_2 are discontinuous at most countably many points, the set E, where ρ_1 and ρ_2 are continuous, is dense in IR. If $\lambda, \mu \in E$ we get $\rho_2(\lambda) - \rho_2(\mu) = \rho_1(\lambda) - \rho_1(\mu)$. Letting μ tend to $-\infty$ we obtain $\rho_1(\lambda) = \rho_2(\lambda)$, $\lambda \in E$. The same argument as in the first part of the proof of Proposition II.3.1 now shows that $\rho_1(\lambda) = \rho_2(\lambda)$ for any $\lambda \in IR$.

 $\Gamma^*(M)$ also has a closedness property, namely

Theorem II.3.5: Let $\{F_k\}$ be a sequence contained in $\Gamma^*(M)$. Then there is a subsequence $\{F_k\}$ of $\{F_k\}$ with

$$F_{k_n}(z) \rightarrow F(z)$$
, $n \rightarrow \infty$, Im $z \neq 0$, $F \in \Gamma^*(M)$.

Proof: We have

$$F_{k}(z) = \int_{-\infty}^{+\infty} \frac{d\rho_{k}(\lambda)}{\lambda - z}, k \in \mathbb{N}, \text{ Im } z \neq 0,$$

where $\rho_k\in\Gamma(M)$. Since $\rho_k(-\infty)=0$ we easily obtain that $\left|\,\rho_k^{}(\lambda)\,\right|\,\leq\, M.$ Helly's selection principle shows that a subsequence $\{\,\rho_k^{}\,\}$ of $\{\,\rho_k^{}\}$ such that

$$\rho_{k_{n}}(\lambda) \rightarrow \rho(\lambda), \ n \rightarrow \infty, \ \lambda \in \mathbb{R},$$

$$\begin{array}{c|c}
+\infty \\
\int & |d\rho(\lambda)| \leq M, \\
-\infty & |\rho(\lambda)| \leq M.
\end{array}$$

Helly's convergence theorem furnishes

$$F_{k_n}(z) \rightarrow \int_{-\infty}^{+\infty} \frac{d\rho(\lambda)}{\lambda - z}, \quad n \rightarrow \infty, \quad \text{Im } z \neq 0.$$

Setting $\rho^*(\lambda) = \rho(\lambda + 0) - \rho(-\infty)$ we obtain an element from Γ (M) and

$$F(z) := \int_{-\infty}^{+\infty} \frac{d\rho(\lambda)}{\lambda - z} = \int_{-\infty}^{+\infty} \frac{d\rho^*(\lambda)}{\lambda - z};$$

here we have applied Proposition II.3.1.

§ 4. Integral Representation of the Resolvent

Our aim in the present paragraph is to prove a representation formula for the resolvent $(A-z)^{-1}$, Im $z \neq 0$, of a selfadjoint operator A in a Hilbert space H. This formula is of the following type:

$$(R_z f, g) = \int_{-\infty}^{+\infty} \frac{1}{\lambda - z} d\rho (\lambda; f, g)$$

where $\rho(.;f,g)$ is a function having bounded variation $(-\infty,+\infty)$. From now on we assume that $\underline{\mathcal{H}}$ is separable. In view of the applications we have in mind this is no serious restriction since in most cases the underlying Hilbert space \mathcal{H} is $L^2(\Omega)$, Ω an open subset of \mathbb{R}^n . We need the following

Proposition II.4.1: Let H be hermitian in H with domain of definition $\mathcal{D}(H)$. Then there exists a subspace $\mathcal{D}' \subset \mathcal{D}(H)$ and a sequence $\{H_n\}$ of bounded hermitian operators with the following properties:

- (a) $\mathcal{D}(H_n) = \mathcal{D}'$. \mathcal{D}' is dense in $\mathcal{D}(H)$ with respect to the graph-norm of H, i.e. for any $f \in \mathcal{D}(H)$ there exists a sequence $\{f_n\}$ in \mathcal{D}' with $\|f-f_n\| + \|Hf_n-Hf\| \to 0$ as $n \to \infty$.
- (b) For any $f \in \mathcal{D}'$ we have $H_n f \to Hf$, $n \to \infty$.
- (c) There exist, for any n, numbers a_n, b_n , $a_n < b_n$, and a spectral family $\{E_n(\lambda) \mid \lambda \in \mathbb{R}\}$ such that

$$H_{n} = \int_{a_{n}}^{b_{n}} \lambda dE_{n}(\lambda).$$

Moreover, there are numbers
$$\lambda_1^{(n)}, \dots, \lambda_{k_n}^{(n)}$$
 such that $a_n < \lambda_1^{(n)} < \lambda_2^{(n)} < \dots < \lambda_{k_n}^{(n)} < b_n$, and the $E_n(\lambda)$ are constant for $\lambda < \lambda_1^{(n)}, \lambda > \lambda_{k_n}^{(n)}, \lambda_j^{(n)} < \lambda < \lambda_{j+1}^{(n)}, j = 1, \dots, k_n-1$.

116

<u>Proof:</u> Since $R(\overline{H}\pm i)$ is a closed subspace of H, it is easy to see that $R(\overline{H}\pm i)$ are also separable. From this it follows that $R(H\pm i)$ are separable (cf. Proposition I.3.2). Let e.g. $\{g_k\}$ be a sequence which is dense in $R(H\pm i)$, let $f_k \in \mathcal{D}(H)$ and $g_k = (H\pm i)f_k$. Let m_n be the subspace of H which is spanned by f_1,\ldots,f_n ; it consists of all elements

$$f = \sum_{k=1}^{n} c_{k} f_{k}, c_{1}, \dots, c_{n} \in C,$$

its dimension being \leq n. We set

$$v' = \bigcup_{n=1}^{\infty} \mathbf{m}_n$$

Since $\mathbf{M}_n \subset \mathbf{M}_{n+1}$, $n \in \mathbb{N}$, \mathcal{D}' is itself a subspace of \mathcal{H} . For any $f \in \mathcal{D}'$ there is an $\mathbf{n}(f) \in \mathbb{N}$, and there are complex numbers $c_1, \ldots, c_{n(f)}$ such that

$$f = \sum_{k=1}^{n(f)} c_k^* f_k^*.$$

Our first assertion is that \mathcal{D}' is dense in $\mathcal{D}(H)$ with respect to the graph-norm of H. If $f \in \mathcal{D}(H)$, g = (H+i)f, there exists a subsequence $\{g_k\}$ of $\{g_k\}$ with $g_k \to g$, $v \to \infty$.

Then $\|(H+i)(f_{k_{v}}-f)\|^{2} \to 0$, $v \to \infty$, $\|H(f_{k_{v}}-f)\|^{2} + \|f_{k_{v}}-f\|^{2} \to 0$, $v \to \infty$. Since $f_{k_{v}} \in \mathbf{M}_{k_{v}} \subset \mathbf{D}^{*}$, the first assertion is proved. Let E_{n} be the orthogonal projection from \mathcal{H} onto \mathbf{M}_n ; observe that \mathbf{M}_n is closed since it is finite-dimensional. Let $\mathbf{H}_n = \mathbf{E}_n \mathbf{H} \mathbf{E}_n$; in particular \mathbf{H}_n is even defined on \mathcal{H} . If $\mathbf{f} \in \mathcal{D}'$, then $\mathbf{f} \in \mathbf{M}_p$, $\mathbf{p} = \mathbf{n}(\mathbf{f})$. Therefore $\mathbf{E}_n \mathbf{f} = \mathbf{f}$, $\mathbf{n} \geq \mathbf{n}(\mathbf{f})$, and $\mathbf{H}_n \mathbf{f} = \mathbf{E}_n \mathbf{H} \mathbf{E}_n \mathbf{f} = \mathbf{E}_n \mathbf{H} \mathbf{f}$, $\mathbf{n} \geq \mathbf{n}(\mathbf{f})$. The sequence $\{\|\mathbf{E}_n \mathbf{H} \mathbf{f}\|\}$ is uniformly bounded. On the subspace \mathcal{D}' , which is dense in \mathcal{H} , we easily get $(\mathbf{E}_n \mathbf{H} \mathbf{f}, \mathbf{g}) \rightarrow (\mathbf{H} \mathbf{f}, \mathbf{g})$ $(\mathbf{g} \in \mathcal{D}')$ as \mathbf{n} tends to ∞ . Thus $\mathbf{E}_n \mathbf{H} \mathbf{f} \geq \mathbf{H} \mathbf{f}$, $\mathbf{n} \rightarrow \infty$. Since \mathbf{E}_n is a projection we conclude $\|\mathbf{E}_n \mathbf{H} \mathbf{f}\|^2 = (\mathbf{E}_n \mathbf{H} \mathbf{f}, \mathbf{E}_n \mathbf{H} \mathbf{f}) = (\mathbf{E}_n \mathbf{H} \mathbf{f}, \mathbf{H} \mathbf{f}) \rightarrow \|\mathbf{H} \mathbf{f}\|^2$, $\mathbf{n} \rightarrow \infty$. Thus the second assertion is also proved. It is obvious that $(\mathbf{H}_n \mathbf{f}, \mathbf{g}) = (\mathbf{f}, \mathbf{H}_n \mathbf{g})$, $\mathbf{f}, \mathbf{g} \in \mathcal{D}'$ moreover

$$H_n(\mathbf{M}_n) \subset \mathbf{M}_n.$$

Therefore there is an orthonormal basis $\phi_1^{(n)}, \dots, \phi_{p_n}^{(n)}$ of \mathfrak{M}_n , $p_n = \dim \mathfrak{M}_n$, with

$$H_n \varphi_j^{(n)} = \mu_j^{(n)} \varphi_j^{(n)}, j = 1, ..., p_n,$$

and the $\mu_j^{(n)}$ are real numbers (the eigenvalues of the restriction of H_n to m_n). Let $e_{\mu_j}^{(n)}$ be the multiplicity of $\mu_j^{(n)}$. Let

$$E_j^{(n)} f = (f, \phi_j^{(n)}) \phi_j^{(n)}$$
. Then

$$H_{n}f = \sum_{j=1}^{p_{n}} \mu_{j}^{(n)}(f, \phi_{j}^{(n)})\phi_{j}^{(n)},$$

$$= \sum_{j=1}^{p_n} \mu_j^{(n)} E_j^{(n)} f, f \in \mathfrak{M}_n.$$

We set $\mu_0^{(n)} := 0$; we have

$$E_{n} = \sum_{j=1}^{p_{n}} E_{j}^{(n)},$$

$$E_{o}^{(n)} = I - E_{n}.$$

If $f = f_1 + f_2$, $f_1 \in n$, $f_2 \in \frac{1}{n}$, $f \in H$, then

$$H_{n}f = E_{n}HE_{n}(f_{1}+f_{2}),$$

$$= E_{n}HE_{n}f_{1} = H_{n}f_{1}$$

$$= \sum_{j=1}^{p_{n}} \mu_{j}^{(n)}E_{j}^{(n)}f_{1},$$

$$= \sum_{j=0}^{p_{n}} \mu_{j}^{(n)}E_{j}^{(n)}f_{1}.$$

Now we set

$$E_{n}(\lambda) = \sum_{\substack{j, \mu_{j} \\ j}} E_{j}^{(n)}, \lambda \in \mathbb{R}.$$

If $\lambda \geq b_n > \max\{\mu_j^{(n)} \mid 0 \leq j \leq p_n\}$, then $E_n(\lambda) = I$. If the last sum is void, we set by definition $E_n(\lambda) = 0$. Thus $E_n(\lambda) = 0$, $\lambda \leq a_n < \min\{\mu_j^{(n)} \mid 0 \leq j \leq p_n\}$. It is easy to see that $\lim_{\epsilon > 0} E_n(\lambda + \epsilon) f = E_n(\lambda) f \in A$ and that $E_n(\lambda) * = E_n(\lambda)$, $E_n(\lambda) E_n(\mu) = E_n(\min\{\lambda,\mu\})$, $\lambda,\mu \in IR$. Thus the set $\{E_n(\lambda) \mid \lambda \in IR\}$ is a spectral family (cf. II.2, pp.30-32). b_n Finally we evaluate $f = \lambda dE_n(\lambda)$. The integral was already defined in II.2 (Definition II.2.3). We choose a partition $m = \{\lambda_1^{(m)}, \dots, \lambda_{m+1}^{(m)}\} \text{ of } [a_n, b_n], \text{ i.e. } a_n = \lambda_1^{(m)} < \lambda_2^{(m)} < \dots < \lambda_{m+1}^{(m)} = b_n, m \in IN$. We assume that $\delta(\mathbf{3}_m) = \max_{1 \leq j \leq m} |\lambda_{j+1}^{(m)} - \lambda_j^{(m)}| \to 0$, $m \to \infty$. Moreover we assume that each $\mu_j^{(n)}$ is contained in one and only one $(\lambda_{\kappa}^{(m)}, \lambda_{\kappa+1}^{(m)})$, $m \in IN$. Then

$$\begin{array}{ll} b_n \\ \int\limits_{a_n} \lambda \ dE_n(\lambda) = \lim\limits_{m \to \infty} \sum\limits_{\substack{\kappa, (\lambda_{\kappa}^{(m)}, \lambda_{\kappa+1}^{(m)}) \text{ con-} \\ \text{tains one } \mu_j^{(n)}} \mu_j^{(n)} (E_n(\lambda_{\kappa+1}) - E(\lambda_{\kappa})). \end{array}$$

If $\mu_1^{(n)}, \dots, \mu_{n}^{(n)}$ are the pairwise distinct eigenvalues, then

$$b_{n} = b_{n} = b_{n$$

$$= H_n$$
.

Our proposition is proved.

Let us make the following remark: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. If H' is the restriction of H to \mathcal{D}' , where \mathcal{D}' is taken from Proposition II.4.1, then H' is essentially selfadjoint. This is seen as follows: Let $g \in H$, let $f \in \mathcal{D}(H)$ with (H+i)f=g. Then we take a sequence $\{f_n\}$ from \mathcal{D}' such that

$$f_n \rightarrow f$$
, $H'f_n \rightarrow Hf$, $n \rightarrow \infty$.

Thus $(H'+i)f_n \rightarrow g = (H+i)f$, and R(H'+i) is dense in H; the same argument shows that R(H'-i) is dense in H.

Proposition II.4.2: We ass that H is a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. Let $\{H_n\}$ be a sequence of selfadjoint operators in H with domains of definition $\mathcal{D}(H_n)$ such that:

(a) There is a subspace $\mathcal{D}' \subset \mathcal{H}$ with $\mathcal{D}' \subset \mathcal{D}(\mathcal{H})$, $\mathcal{D}' \subset \mathcal{D}(\mathcal{H}_n)$ such that the restriction \mathcal{H}' of \mathcal{H} to \mathcal{D}' is essentially self-adjoint.

(b) For $f \in \mathcal{V}'$ we have $H_n f \to Hf$, $n \to \infty$.

Then

$$R_z^{(n)} f \rightarrow R_z f$$
, $f \in H$, Im $z \neq 0$,

where
$$R_z^{(n)} = (H_n - z)^{-1}$$
.

<u>Proof:</u> Let $H'_z = \{g \mid g = (H-z)f \text{ for some } f \in \mathcal{D}'\}$, Im $z \neq 0$. Since H' is essentially selfadjoint, the space H'_z is dense in H. Namely, as in the proof of Proposition I.3.2 we get $\overline{R(H'-z)} = R(\overline{H}-z)$, Im $z \neq 0$. Since \overline{H} is selfadjoint we have by Theorem II.1.1 the relation $R(\overline{H}-z) = H$. Let $g \in H'_z$. Then

$$R_{z}^{(n)}g-R_{z}g = (H_{n}-z)^{-1}g - (H-z)^{-1}g,$$

$$= (H_{n}-z)^{-1}(H-z)(H-z)^{-1}g - (H_{n}-z)^{-1}(H_{n}-z)(H-z)^{-1}g,$$

$$= (H_{n}-z)^{-1}(H-H_{n})(H-z)^{-1}g,$$

$$\|R_{z}^{(n)}g-R_{z}g\| \le \frac{1}{\|Im z\|} \|(H-H_{n})(H-z)^{-1}g\| \to 0, n \to \infty.$$

Since the operators $R_Z^{(n)}-R_Z$ have uniformly bounded (with respect to n) norms and since H_Z^{\bullet} is dense in H we arrive at the assertion.

Proposition II.4.3: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Then the following integral representation holds for R_z , Im $z \neq 0$:

$$(R_zf,g) = \int_{-\infty}^{+\infty} \frac{d\rho(\lambda;f,g)}{\lambda-z},$$

where $\rho(.;f,g)$ is some function from $\Gamma(\|f\|\|g\|)$.

<u>Proof:</u> Let $\{H_n\}$ be the approximating sequence of bounded hermitian operators which has been constructed in Proposition II.4.1. Let $\{E_n(\lambda) \mid \lambda \in IR\}$ be the spectral family which has been constructed in Proposition II.4.1. It follows from Proposition II.4.1 that the restriction of H to the space \mathcal{D}^* in Proposition II.4.1 is essentially selfadjoint. Proposition II.4.2 now furnishes

$$R_z^{(n)} f \rightarrow R_z f, n \rightarrow \infty.$$

We claim that

(II.4.1)
$$R_z^{(n)} = \int_{a_n}^{b_n} \frac{dE_n(\lambda)}{\lambda - z}$$
.

As in the proof of Proposition II.4.1 we obtain (using the same notations)

$$\frac{b_{n}}{\int_{a_{n}}^{dE_{n}(\lambda)}} \frac{dE_{n}(\lambda)}{\lambda - z} = \sum_{l=1}^{n} (\mu_{l}^{(n)} - z)^{-1} \cdot \sum_{\substack{j=e\\ \mu_{l}(n)}^{(n)} + \dots + e\\ j=1}^{n} \sum_{\substack{j=e\\ \mu_{l}(n)}^{(n)} + \dots + e\\ \mu_{l}(n)}^{(n)} + 1} E_{j}^{(n)} + (\mu_{o}^{(n)} - z)^{-1} F_{o}^{(n)},$$

$$(H_{n}-z) \int_{a_{n}}^{b_{n}} \frac{dE_{n}(\lambda)}{\lambda-z} = \int_{a_{n}}^{b_{n}} \frac{dE_{n}(\lambda)}{\lambda-z} (H_{n}-z)$$

$$= \int_{a_{n}}^{b_{n}} \frac{dE_{n}(\lambda)}{\lambda-z} \int_{a_{n}}^{b_{n}} (\lambda-z) dE_{n}(\lambda)$$

since

$$H_{n}-z = \sum_{l=1}^{n} (\mu_{l}^{(n)}-z) \cdot \sum_{\substack{j=e\\\mu(n)}+\dots+e\\1-1}} \sum_{\substack{j=e\\\mu(n)}+\dots+e\\1-1}} (\mu_{l}^{(n)}-z) \cdot \sum_{\substack{j=e\\\mu(n)}+\dots+e\\1-1}} E_{j}^{(n)} + (\mu_{l}^{(n)}-z) \cdot E_{j}^{(n)}$$

$$= \int_{a_{n}} (\lambda-z) dE_{n}(\lambda).$$

Inserting the finite sums for $\int\limits_a^b \frac{dE_n(\lambda)}{\lambda-z}$, $\int\limits_a^b (\lambda-z)dE_n(\lambda)$ and a_n taking into consideration that $E_j^{(n)}E_{j'}^{(n)}=0$, $j \neq j'$, we arrive at (II.4.1). We have

$$(R_z^{(n)}f,g) = \int_{a_n}^{b_n} \frac{1}{\lambda-z} d(E_n(\lambda)f,g) = \int_{-\infty}^{+\infty} \frac{1}{\lambda-z} d(E_n(\lambda)f,g).$$

by Theorem II.2.4. The function $\rho_n(\lambda;f,g) = (E_n(\lambda)f,g)$ has bounded variation on $(-\infty,+\infty)$ with $\int_{-\infty}^{\infty} |d(E(\lambda)f,g)| \le ||f|| \cdot ||g||$; this was proved in Theorem II.2.1. The defining properties of a spectral family imply that $\rho_n \in \Gamma(||g|| ||f||)$ and consequently $(R^{(n)}f,g) \in \Gamma^*(||g|| ||f||)$. By Theorem II.3.5 there is a subsequence $\{(R^{(n)}f,g)\}$ of $\{(R^{(n)}f,g)\}$ such that

$$(R_z^{j}f,g)\to\phi(z),\ j\to\infty,\ \text{Im}\ z\neq0,$$

with $\phi \in \Gamma^*(\|g\|\|f\|)$. Since $R_z^{(n)} f \to R_z^{(n)} f$, we get $\phi(z) = (R_z^{(n)} f, g)$, which completes the proof.

§ 5. Fundamental Properties of the Function $\rho(.;f,q)$

Our aim here is to show that $\rho(\lambda;f,g)=(E(\lambda)f,g)$ with a spectral family $\{E(\lambda) \mid \lambda \in IR\}$.

Proposition II.5.1: Let $f,g:\mathbb{R} \to \mathbb{C}$ be continuous functions with

$$\lim_{\lambda \to \pm \infty} f(\lambda) = \lim_{\lambda \to \pm \infty} g(\lambda) = 0.$$

Let $\rho \in \Gamma(M)$. Then the function

$$G(\lambda) = \int_{-\infty}^{\lambda} g(\mu) d\rho(\mu)$$

is from $\Gamma(M')$ for some suitable $M' \ge 0$, and we have

(II.5.1)
$$\int_{-\infty}^{+\infty} f(\lambda)g(\lambda)d\rho(\lambda) = \int_{-\infty}^{+\infty} f(\lambda)dG(\lambda).$$

<u>Proof:</u> First we have to show that G is continuous from the right: Let $\epsilon > 0$; then

$$G(\lambda + \varepsilon) - G(\lambda) = \int_{\lambda}^{\lambda + \varepsilon} g(\mu) d\rho(\mu).$$

If
$$\lambda = \mu_1 < \mu_2 < \dots < \mu_{n+1} = \lambda + \epsilon$$
 we get

$$| \sum_{j=1}^{n} g(\mu_{j}) (\rho(\mu_{j+1}) - \rho(\mu_{j})) | \leq$$

$$\leq \left| \begin{array}{c} n \\ \Sigma \\ j=1 \end{array} \right| \left(g(\mu_j) - g(\lambda) \right) \left(\rho(\mu_{j+1}) - \rho(\mu_j) \right) \left| \right. +$$

+
$$\left| \sum_{j=1}^{n} g(\lambda) \left(\rho \left(\mu_{j+1} \right) - \rho \left(\mu_{j} \right) \right) \right|$$
,

$$\leq \sup_{\lambda \leq s, t \leq \lambda + \epsilon} |g(s) - g(t)| \cdot \int_{-\infty}^{+\infty} |d\rho(\mu)| +$$

$$+ \sum_{j=1}^{n} g(\lambda) \left(\rho(\mu_{j+1}) - \rho(\mu_{j})\right) |.$$

The last sum is estimated by

Sup
$$|g(s)| \cdot |g(\lambda + \varepsilon) - g(\lambda + 0)|$$

 $\lambda \leq s \leq \lambda + 1$

as g(N) doesn't depend on j. The preceding calculations show that G is continuous from the right. Let us take n+1 points $\lambda_1,\ldots,\lambda_{n+1}\in\mathbb{R}$ with $\lambda_1<\lambda_2<\ldots<\lambda_{n+1}$. Then

$$\begin{array}{l}
n \\
i=1 \\
i=1 \\
\\
& \sum_{i=1}^{\lambda} \frac{\lambda_{i+1}}{\beta_{i}} = \frac{1}{2} \left[\frac{1}{2} \left[\frac{\lambda_{i}}{\beta_{i}} \right] \right] = \frac{1}{2} \\
& \sum_{i=1}^{\lambda} \frac{\lambda_{i}}{\beta_{i}} = \frac{1}{2} \frac{\lambda_{i}}{\beta_{i}} =$$

The preceding calculations also show that $G(\lambda) \to 0$ if $\lambda \to -\infty$. Thus $G \in \Gamma(M')$. Now we have to prove (II.5.1). If $\lambda_1, \dots, \lambda_{n+1}$ are as before, then for any $\eta > 0$

$$|\sum_{i=1}^{n} f(\lambda_{i}) (G(\lambda_{i+1}) - G(\lambda_{i})) - i = 1$$

$$- \sum_{i=1}^{n} f(\lambda_{i}) g(\lambda_{i}) (\rho(\lambda_{i+1}) - \rho(\lambda_{i})) |$$

$$= |\sum_{i=1}^{n} f(\lambda_{i}) \int_{\lambda_{i}}^{\lambda_{i+1}} (g(\lambda) - g(\lambda_{i})) d\rho(\lambda) |$$

$$\leq \eta \cdot \sup_{\lambda \in IR} |f(\lambda)| \int_{-\infty}^{+\infty} |d\rho(\lambda)|,$$

$$\leq \eta \cdot \sup_{\lambda \in IR} |f(\lambda)| \cdot M,$$

provided $|g(\lambda)-g(\lambda_i)| \le \eta$, $\lambda_i \le \lambda \le \lambda_{i+1}$. On the other hand we may also assume that

$$|\int_{-\infty}^{+\infty} f(\lambda) dG(\lambda) - \sum_{i=1}^{n} f(\lambda_i) (G(\lambda_{i+1}) - G(\lambda_i))| \le \eta,$$

since $\lim_{\lambda \to +\infty} f(\lambda) = 0$ and, that

$$| \sum_{i=1}^{n} f(\lambda_{i})g(\lambda_{i}) (\rho(\lambda_{i+1}) - \rho(\lambda_{i})) - \int_{-\infty}^{+\infty} f(\lambda)g(\lambda)d\rho(\lambda) | \leq \eta$$

since $\lim_{\lambda \to \pm \infty} f(\lambda)g(\lambda) = 0$. Thus we end up with

$$|\int_{-\infty}^{+\infty} f(\lambda) dG(\lambda) - \int_{-\infty}^{+\infty} f(\lambda) g(\lambda) d\rho(\lambda)| \leq 2\eta + \eta \cdot \sup_{\lambda \in IR} |f(\lambda)| \cdot M.$$

The proposition is proved.

Proposition II.5.2: Let ρ be as in Proposition II.4.3. We have for all λ \in IR the relation

$$\rho(\lambda; f, g) = (E(\lambda)f, g),$$

where the $E(\lambda)$, $\lambda \in \mathbb{R}$, are everywhere in H defined bounded operators having the following properties:

 $E(\lambda)$ is hermitian, $\lambda \in \mathbb{R}$, $||E(\lambda)|| \le 1$.

<u>Proof:</u> We have for $c_i \in \mathbb{C}$, $f_i \in \mathbb{H}$, $g_i \in \mathbb{H}$, i = 1, 2, $f, g \in \mathbb{H}$:

$$\int_{-\infty}^{+\infty} \frac{d\rho (\lambda; c_1 f_1 + c_2 f_2, g)}{\lambda - z} = (R_z (c_1 f_1 + c_2 f_2), g),$$

$$= c_1(R_zf_1,g) + c_2(R_zf_2,g)$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\lambda - z} d(c_1 \rho(\lambda; f_1, g) + c_2 \rho(\lambda; f_2, g)),$$

Im z *0. Set M = $[\max\{\|c_1f_1+c_2f_2\|, |c_1|\|f_1\|, |c_2|\|f_2\|\}] \cdot \|g\|$. Then $\rho(.;c_1f_1+c_2f_2,g)$, $c_1\rho(.;f_1,g)+c_2\rho(.;f_2,g) \in \Gamma(M)$, and Theorem II.3.4 then shows

$$\rho(\lambda; c_1 f_1 + c_2 f_2, g) = c_1 \rho(\lambda; f_1, g) + c_2 \rho(\lambda; f_2, g).$$

In the same way it is shown that

$$\rho\left(\lambda; \mathsf{f}, \mathsf{c}_1 \mathsf{g}_1 + \mathsf{c}_2 \mathsf{g}_2\right) = \overline{\mathsf{c}_1} \rho\left(\lambda; \mathsf{f}, \mathsf{g}_1\right) + \overline{\mathsf{c}_2} \rho\left(\lambda; \mathsf{f}, \mathsf{g}_2\right).$$

Since $\rho \in \Gamma(\|f\|\|g\|)$ we get the inequality

(II.5.2)
$$|\rho(\lambda;f,g)| \le ||f|||g||, \lambda \in \mathbb{R}$$
.

We have $(R_zf,g) = (f,R_{\overline{z}}g) = \overline{(R_{\overline{z}}g,f)}$ since $R_z^* = R_{\overline{z}}$. Thus

$$\int_{-\infty}^{+\infty} \frac{d\rho(\lambda; f, g)}{\lambda - z} = \int_{-\infty}^{+\infty} \frac{d\rho(\lambda; g, f)}{\lambda - \overline{z}},$$

$$= \int_{-\infty}^{+\infty} \frac{d\overline{\rho(\lambda; g, f)}}{\lambda - \overline{z}},$$

and Theorem II.3.4 furnishes

$$\rho(\lambda;f,g) = \overline{\rho(\lambda;g,f)}, \lambda \in \mathbb{R}.$$

For each $\lambda \in \mathbb{R}$ thus $\rho(\lambda;.,.)$ is an hermitian sesquilinear form satisfying (II.5.2). Thus for each $\lambda \in \mathbb{R}$ there is one and only one everywhere defined hermitian bounded operator $E(\lambda)$ with

$$\rho(\lambda; f, g) = (E(\lambda)f, g).$$

From (II.5.2) it follows that $||E(\lambda)|| \le 1$.

Proposition II.5.3: There is one and only one $\rho(.;f,g) \in \Gamma(\|f\|\|g\|)$ such that

$$(R_zf,g) = \int_{-\infty}^{+\infty} \frac{d\rho(\lambda;f,g)}{\lambda-z}, f,g \in H.$$

The operators $E(\lambda)$, $\lambda \in \mathbb{R}$, constructed in the preceding proposition, form a spectral family.

Proof: By Theorem II.1.3 we have

$$\frac{R_{z_1}-R_{z_2}}{z_1-z_2} = R_{z_1}R_{z_2}, z_1 \neq z_2, \text{ Im } z_1, \text{Im } z_2 \neq 0.$$

$$\frac{1}{\sqrt{2}} \frac{d(E(\lambda)f,g)}{\lambda-z_{1}} - \int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,g)}{\lambda-z_{2}} \frac{1}{z_{1}-z_{2}} = \frac{1}{\sqrt{2}} \frac{d(E(\lambda)f,g)}{(\lambda-z_{1})(\lambda-z_{2})} = \frac{1}{\sqrt{2}} \frac{d(E(\lambda)f,g)}{(\lambda-z_{1})(\lambda-z_{2})} = \frac{1}{\sqrt{2}} \frac{1}{z_{1}-z_{2}} \frac{1}{z_{1}-$$

$$\int_{-\infty}^{+\infty} \frac{d\sigma_{z_{1}}^{(\lambda)}}{\lambda - z_{2}} = \int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,g)}{(\lambda - z_{1})(\lambda - z_{2})},$$

$$= \int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,R_{\overline{z}_1}g)}{\lambda - z_2}$$

by Proposition II.5.1 and the preceding calculations. Theorem II.3.4 yields

$$\sigma_{z_1}(\lambda) = (E(\lambda)f, R_{\overline{z}_1}g),$$

$$= \int_{-\infty}^{\lambda} \frac{d(E(\mu)f, g)}{\mu - z_1}.$$

We can replace z_1 by z with Im $z \neq 0$ and get

$$(E(\lambda) f, R_{\overline{z}}g) = \overline{(R_{\overline{z}}g, E(\lambda) f)},$$

$$= \int_{-\infty}^{+\infty} \frac{d(E(\mu)g, E(\lambda) f)}{\mu - \overline{z}},$$

$$= \int_{-\infty}^{+\infty} \frac{d(E(\mu)g, E(\lambda) f)}{\mu - \overline{z}},$$

$$= \int_{-\infty}^{+\infty} \frac{d(E(\mu)E(\lambda) f, g)}{\mu - \overline{z}},$$

$$= \int_{-\infty}^{\lambda} \frac{d(E(\mu)f, g)}{\mu - \overline{z}},$$

where we have used Proposition II.5.2 and equation (II.5.3). Let us set

$$\tau_{\lambda}(\mu) = \begin{bmatrix} (E(\mu)f,g), & \mu \leq \lambda, \\ (E(\lambda)f,g), & \mu \geq \lambda. \end{bmatrix}$$

Then

$$\int_{-\infty}^{+\infty} \frac{d\tau_{\lambda}(\mu)}{\mu - z} = \int_{-\infty}^{\lambda} \frac{d(E(\mu)f,g)}{\mu - z}$$

$$= \int_{-\infty}^{+\infty} \frac{d(E(\mu)E(\lambda)f,g)}{\mu - z}, \text{ Im } z \neq 0.$$

Again Theorem II.3.4 yields

$$\tau_{\lambda}(\mu) = (E(\mu)E(\lambda)f,g),$$

$$E(\mu)E(\lambda)f = E(\min(\mu,\lambda)f, f,g \in \mathcal{H}.$$

In particular each $E(\lambda)$ is a projection in H. Since $(E(.)f,g) \in F(\|f\|\|g\|)$ we have

$$(E(\lambda+\epsilon)f,g) \rightarrow (E(\lambda)f,g), \epsilon > 0, \epsilon \rightarrow 0.$$

However

$$\|E(\lambda+\epsilon)f-E(\lambda)f\|^2 = (E(\lambda+\epsilon)f,f) + (E(\lambda)f,f) - 2(E(\lambda)f,f)$$
$$= (E(\lambda+\epsilon)f,f) - (E(\lambda)f,f)$$

and consequently

$$\lim_{\varepsilon > 0, \\ \varepsilon \to 0} E(\lambda + \varepsilon) f = E(\lambda) f,$$

 $\lambda \in \mathbb{R}$. If $\lambda \to -\infty$, then $(E(\lambda)f,f) \to 0$, since $(E(.)f,f) \in \Gamma(\|f\|\|g\|)$. Using $(E(\lambda)f,f) = \|E(\lambda)f\|^2$ we get

$$\lim_{\lambda \to -\infty} E(\lambda) f = O, f \in \mathcal{H}.$$

Now we consider the case $\lambda \to +\infty$. The function $(E(\lambda)f,f)$ is bounded and monotonically non decreasing from IR into the nonnegative reals. Thus

$$\lim_{\lambda \to +\infty} (E(\lambda)f, f) \text{ exists.}$$

Assume that $\lambda < \mu$. Then

$$\|E(\mu)f-E(\lambda)f\|^2 = (E(\mu)f,f) - (E(\lambda)f,f)$$

$$\leq \sup_{\lambda < \mu} |(E(\mu)f,f)-(E(\lambda)f,f)| =: \varepsilon(\lambda),$$

and $\varepsilon(\lambda)$ tends to 0 if $\lambda \to +\infty$. Thus there is, for each $f \in \mathcal{H}$, an element $L(f) \in \mathcal{H}$ such that $E(\lambda)f \to L(f)$, $\lambda \to \infty$. Set

$$g = f - L(f) = f - \lim_{\lambda \to +\infty} E(\lambda) f.$$

For $\mu \in \mathbb{R}$ we get

$$E(\mu)g = E(\mu)f - \lim_{\lambda \to +\infty} E(\mu)E(\lambda)f = 0.$$

If Im $z \neq 0$, $h \in H$, then consequently

$$(R_z^{g,h}) = \int_{-\infty}^{+\infty} \frac{d(E(\mu)g,h)}{\mu-z} = 0,$$

$$((H-z)^{-1}g_{i}h) = 0.$$

Since $R(H-\overline{z}) = H$ we can find an $u \in \mathcal{D}(H)$ with $h = (H-\overline{z})u$. Thus

$$((H-z)^{-1}g, (H-\overline{z})u) = 0, u \in \mathcal{D}(H),$$

 $(g,u) = 0, u \in \mathcal{D}(H).$

Since $\mathcal{D}(H)$ is dense we obtain g=0 and f=L(f). The first part of Proposition II.5.3 is an easy consequence of Theorem II.3.4. \square

We are now in a position to prove the main result of the present paragraph, namely

Theorem II.5.1: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. Then there is one and only one spectral family $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ such that

$$(H-z)^{-1} = \int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z},$$

where the last integral is convergent with respect to the norm of L(H,H).

Proof: The convergence of
$$\int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z} := \lim_{\substack{b \to +\infty, \ a \to -\infty}}^{b} \frac{dE(\lambda)}{\lambda - z}$$
 is an easy

consequence of Theorem II.2.4 (if $\{E(\lambda) \mid \lambda \in IR\}$ is any spectral family). Now let us take the spectral family just constructed in Proposition II.5.3. Then

$$(R_{z}f,g) = \int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,g)}{\lambda - z}$$
$$= (\int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z}f,g), f,g \in \mathcal{H},$$

and we obtain

$$R_{z}f = \int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z} f.$$

If there is any other spectral family $\{\widetilde{E}(\lambda) \mid \lambda \in \mathbb{R}\}$ such that

$$R_{z} = \int_{-\infty}^{+\infty} \frac{d\widetilde{E}(\lambda)}{\lambda - z}$$

we get in turn

$$\int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,g)}{\lambda - z} = \int_{-\infty}^{+\infty} \frac{d(E(\lambda)f,g)}{\lambda - z}.$$

Theorem II.3.4 furnishes $E(\lambda)f = \widetilde{E}(\lambda)f$, $\lambda \in \mathbb{R}$.

§ 6. The Spectral Theorem for Selfadjoint Operators

The novelty now is that we consider integrals $\int_{-\infty}^{+\infty} \phi(\lambda) dE(\lambda) f$ for unbounded continuous functions $\phi: IR \to \mathbb{C}$. In this paragraph however we only take a very simple one, namely $\phi(\lambda) = \lambda$.

Proposition II.6.1: Let $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ be a spectral family. Let $f \in \mathcal{H}$. Then

$$\lim_{\substack{\lambda \to -\infty, \\ b \to +\infty}} \int_{\lambda} \lambda dE(\lambda) f = : \int_{-\infty}^{+\infty} \lambda dE(\lambda) f$$

exists if and only if

$$\lim_{\substack{A \to -\infty, \ a \\ b \to +\infty}} \int_{0}^{\infty} \lambda^{2} d(E(\lambda)f, f) = : \int_{-\infty}^{+\infty} \lambda^{2} d(E(\lambda)f, f)$$

exists.

Proof: Let us first assume that

b
lim
$$\int \lambda dE(\lambda) f$$
 $a \rightarrow -\infty$, a
 $b \rightarrow +\infty$

exists. For the definition of the integrals $\int \lambda \, dE(\lambda) f$ the reader a may confer Definition II.2.3. We have then

$$\|\int_{a}^{b} \lambda dE(\lambda) f\|^{2} \leq M.$$

We again refer to Definition II.2.3 and take the Riemannian sums T_n for $\phi(\lambda)=\lambda$. This gives

$${\binom{k_{n}}{\sum_{i=1}^{k} \lambda_{i}^{(n)} E(\Delta_{i}^{(n)}) f, \sum_{i=1}^{k} \lambda_{i}^{(n)} E(\Delta_{i}^{(n)}) f}$$

$$= {\binom{k_{n}}{\sum_{i,j=1}^{k} \lambda_{i}^{(n)} \lambda_{j}^{(n)} (E(\Delta_{j}^{(n)}) E(\Delta_{i}^{(n)}) f, f)}$$

$$= {\binom{k_{n}}{\sum_{i=1}^{k} \lambda_{i}^{(n)}^{2} (E(\Delta_{i}^{(n)}) f, f);}$$

thus

b
$$\int_{0}^{\infty} \lambda^{2} d(E(\lambda)f,f) \leq M,$$
a

and $\lim_{f \to \infty} \int_{0}^{2} \lambda^{2} d(E(\lambda)f,f)$ exists. Secondly we assume that $a \to -\infty$, a $b \to +\infty$

 $\int_{-\infty}^{+\infty} \lambda^2 d(E(\lambda)f,f) \text{ exists. Let } -\infty < c < a < b < d < +\infty,$

$$\delta = \| \int_{C}^{d} \lambda \, dE(\lambda) f - \int_{A}^{b} \lambda \, dE(\lambda) f \|^{2},$$

$$= \| \int_{C}^{a} \lambda \, dE(\lambda) f + \int_{B}^{c} \lambda \, dE(\lambda) f \|^{2}.$$

Taking the Riemannian sums as before we obtain

$$\delta = \int_{c}^{a} \lambda^{2} d(E(\lambda)f,f) + \int_{b}^{d} \lambda^{2} d(E(\lambda)f,f),$$

$$\leq \int_{-\infty}^{a} \lambda^{2} d(E(\lambda)f,f) + \int_{b}^{+\infty} \lambda^{2} d(E(\lambda)f,f).$$

The latter integrals tend to 0 if a $\rightarrow -\infty$, b $\rightarrow +\infty$. Our proposition is proved.

Theorem II.6.1: Let $\{E(\lambda) \mid \lambda \in IR\}$ be a spectral family. Let

$$\mathcal{D} = \{ f | f \in \mathcal{H}, \int_{-\infty}^{+\infty} \lambda^2 d(E(\lambda) f, f) < +\infty \}.$$

Then \mathcal{D} is a dense linear subspace of \mathcal{H} . The operator \mathcal{H} , defined by

is selfadjoint.

<u>Proof:</u> Proposition II.6.1 shows that H is well defined and that $\mathcal D$ is a linear subspace of H. Clearly $H:\mathcal D\to H$ is linear. First we show that H is hermitian. Set

$$H_{ab}f = \int_{a}^{b} \lambda dE(\lambda)f, f \in H.$$

Then $(H_{ab}f,g)=\int\limits_a^b\lambda d(E(\lambda)f,g)=\int\limits_a^b\lambda d(f,E(\lambda)g)=(f,H_{ab}g)$. Thus a bounded everywhere defined hermitian operator. If $g,f\in\mathcal{D}$ we obtain

$$(Hf,g) = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} (H_{ab}f,g),$$

$$= \lim_{\substack{a \to -\infty, \\ b \to +\infty}} (f,H_{ab}g) = (f,Hg).$$

Now we have to show that $\mathcal D$ is dense in $\mathcal H$. Let $-\infty < a < b < +\infty$. Set $\Delta = [a,b]$. Let $f \in \mathcal H$. First we prove that $g = E(\Delta)f$ is in $\mathcal D$. We have $E(\lambda)g = E(\lambda)(E(b)-E(a))f$ and consequently

$$E(\lambda)g = \begin{cases} 0, & \lambda \leq a \\ (E(\lambda)-E(a))f, & a \leq \lambda \leq b, \\ (E(b)-E(a))f, & \lambda \geq b. \end{cases}$$

Thus for c <a <b <d

d
$$\int \lambda dE(\lambda)g = \int \lambda dE(\lambda)f = \int \lambda dE(\lambda)g$$
c
$$+\infty$$

$$= \int \lambda dE(\lambda)g,$$

$$-\infty$$

and Proposition II.6.1 shows that $g \in \mathcal{D}$. Since $\lim_{a \to -\infty} (E(b) - E(a)) f$

= f it follows that \mathcal{D} is dense in \mathcal{H} . We will write now $\mathcal{D}(\mathcal{H})$ instead of \mathcal{D} and so far we know already that \mathcal{H} is hermitian. Let $z \in \mathbb{C}$, Im $z \neq 0$. Let again c < a < b < d. We take a decomposition of [c,d] of the following form:

$$c = \mu_1 < \mu_2 < \dots < \mu_{k+1} = a < \mu_{k+2} < \dots < \mu_{n+1} = b < \mu_{n+2} < \dots < \mu_{n+1} = d.$$

Then $\int\limits_a^b (\lambda-z)\,dE(\lambda)\,(\int\limits_c^d \frac{1}{\lambda-z}\,dE(\lambda)h)$ is the limit of the Riemannian sums

$$\widetilde{\widetilde{n}}_{j=k} (\widetilde{\mu}_{j}-z) (E(\mu_{j+1})-E(\mu_{j})) \cdot [\widetilde{\Sigma}_{j=1} (E(\mu_{j+1})-E(\mu_{j}))h],$$

$$= \widetilde{\widetilde{n}}_{j=1} (E(\mu_{j+1})-E(\mu_{j}))h,$$

$$= \widetilde{j}_{j=1} (E(\mu_{j+1})-E(\mu_{j}))h,$$

=
$$(E(b)-E(a))h, h \in \mathcal{H}$$
,

provided $\max_{1 \le j \le n} |\mu_{j+1}^{-\mu}|$ tends to O. This furnishes

b
$$\int_{a}^{+\infty} (\lambda - z) dE(\lambda) \left(\int_{-\infty}^{+\infty} \frac{1}{\lambda - z} dE(\lambda) h \right) = (E(b) - E(a)) h.$$

If
$$f \in H$$
, $g = \int_{-\infty}^{+\infty} \frac{1}{\lambda - z} dE(\lambda) f$ we get

b
$$\int (\lambda - z) dE(\lambda) g = (E(b) - E(a)) f,$$
a

b
$$\lim_{a \to -\infty, a} \int (\lambda - z) dE(\lambda) g = f = \lim_{a \to -\infty, a} [\int \lambda dE(\lambda) g - z(E(b) - E(a)) g].$$
b b
$$\lim_{a \to -\infty, a} \int (\lambda - z) dE(\lambda) g = f = f = \lim_{a \to -$$

In particular $\lim_{\substack{a\to -\infty,\\b\to +\infty}} \frac{b}{\int \lambda\,dE(\lambda)g}$ exists and consequently $g\in\mathcal{D}(H)$,

(H-z)g = f. Thus R(H-z) = H, Im $z \neq 0$, and H is selfadjoint.

The theorem to follow is the spectral theorem for selfadjoint operators.

Theorem II.6.2: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Then there is one and only one spectral family $\{E(\lambda) \mid \lambda \in IR\}$ such that

(II.6.1)
$$\mathcal{D}(H) = \{f | f \in H, \int_{-\infty}^{+\infty} \lambda^2 d(E(\lambda)f, f) < +\infty \},$$

(II.6.2) Hf =
$$\int_{-\infty}^{+\infty} \lambda \, dE(\lambda) f, f \in \mathcal{D}(H).$$

<u>Proof:</u> Let us take the spectral family $\{E(\lambda) \mid \lambda \in IR\}$ from Theorem II.5.1. Let again

 $-\infty < c < a < b < d < +\infty$.

Let us take a decomposition of [c,d] as in the proof of Theorem II.6.1. Then we get for the Riemannian sums

(II.6.3)
$$\sum_{j=1}^{\infty} \frac{1}{i^{2}j^{-z}} (E(\mu_{j+1}) - E(\mu_{j})) \cdot [\sum_{j=1}^{\infty} (\widetilde{\mu}_{j} - z) (E(\mu_{j+1}) - E(\mu_{j})) f]$$

$$= (E(b) - E(a)) f, f \in \mathcal{H}, Im z \neq 0.$$

Thus

$$(H-z)^{-1}g = E(\Delta)f$$
, $\Delta = [a,b]$, $g = \int_a^b (\lambda-z)dE(\lambda)f$, $E(\Delta)f \in \mathcal{D}(H)$, $(H-z)E(\Delta)f = g$,

$$HE(\Delta) f-zE(\Delta) f = \int_{a}^{b} (\lambda-z) dE(\lambda) f$$

$$= \int_{a}^{b} \lambda dE(\lambda) f - zE(\Delta) f,$$
a

HE(Δ)f =
$$\int_{a}^{b} \lambda dE(\lambda) f$$
, f ∈ H.

If $g \in \mathcal{D}(H)$ we obtain

$$(HE(\Delta)f,g) = \int_{A}^{b} \lambda d(E(\lambda)f,g),$$

$$= \int_{A}^{b} \lambda d(f,E(\lambda)g),$$

$$= \int_{A}^{b} \lambda dE(\lambda)g,$$

$$= (f,\int_{A}^{b} \lambda dE(\lambda)g),$$

$$= (\Delta)Hg = \int_{A}^{b} \lambda dE(\lambda)g.$$

Let us take $\Delta = \Delta_n = [-n, +n]$, $n \in \mathbb{N}$. Since $\lim_{n \to \infty} E(\Delta_n) Hg = Hg$ we obtain that

$$\lim_{n\to\infty} f \quad \lambda dE(\lambda)g = Hg.$$

$$\lim_{n\to\infty} -n$$

The general case $a \rightarrow -\infty$, $b \rightarrow +\infty$ is treated in the same way. According to Proposition II.6.1 this implies that

$$\int_{-\infty}^{+\infty} \lambda^2 d(E(\lambda)g,g) < +\infty.$$

Let in turn now $f \in H$ and

$$\int_{-\infty}^{+\infty} \lambda^2 d(E(\lambda)f,f) < +\infty.$$

As just proved we have then $\text{E}\left(\Delta_{n}\right)\text{f}\in\mathcal{V}\left(\text{H}\right)$,

$$HE(\Delta_n)f = \int_{-n}^{+n} \lambda dE(\lambda)f.$$

$$Hf = \int_{-\infty}^{+\infty} \lambda dE(\lambda) f.$$

In the last part of the proof we have to show that the spectral family $\{E(\lambda) \mid \lambda \in IR\}$ is determined uniquely. Taking again the Riemannian sums (II.6.3) we obtain

$$\int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z} \int_{a}^{b} (\lambda - z) dE(\lambda) f = (E(b) - E(a)) f,$$

 $f \in H$, Im $z \neq 0$.

If $f \in \mathcal{D}(H)$, then $\int_{-\infty}^{+\infty} (\lambda - z) dE(\lambda) f$ exists and

$$\int_{-\infty}^{+\infty} \frac{dE(\lambda)}{\lambda - z} g = f \text{ with } g = \int_{-\infty}^{+\infty} (\lambda - z) dE(\lambda) f,$$

i.e. g = (H-z)f. In particular

$$f = (H-z)^{-1}g = \int_{-\infty}^{+\infty} \frac{dE(\lambda)g}{\lambda-z}.$$

This formula, however, holds for any spectral family $\{\widetilde{E}(\lambda) \mid \lambda \in \mathbb{R}\}$ having the properties (II.6.1), (II.6.2) in the present theorem. Theorem II.5.1 completes the proof.

§ 7. The Spectrum of a Selfadjoint Operator

We remind the reader to the Definition II.1.1 of the spectrum of an operator in a Hilbert space. If this operator is selfadjoint we know already that its spectrum is contained in IR. In the sequel we want to give a more precise description of the spectrum S(H) of a selfadjoint operator H in H with domain of definition D(H). H is assumed to be separable and to have infinite dimension. Obviously $S(H) \neq \emptyset$.

Definition II.7.1: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Let $\{E(\lambda) \mid \lambda \in IR\}$ the uniquely determined spectral family which belongs to H according to Theorem II.6.2. Let $\Delta = [a,b]$ for some a,b with $-\infty < a < b < +\infty$. Then

$$\mathfrak{M}(\Delta) = E(\Delta)H = (E(b)-E(a))H$$

is called the spectral space belonging to Δ . If $\Delta \subseteq \Delta'$ then $\mathfrak{M}(\Delta) \subseteq \mathfrak{M}(\Delta')$.

Theorem II.7.1: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Let $\lambda_0 \in \mathbb{R}$. Then $\lambda_0 \in S(H)$ if and only if

$$+\infty \ge \dim \mathfrak{M}(\Delta) > 0$$

for any $\Delta = [a,b]$ with $\lambda_0 \in (a,b)$.

<u>Proof:</u> First we assume that $+\infty \ge \dim$ (Δ) >0 for any Δ with $\lambda \in \Delta$. Then there is a $\phi \in \Delta$ with $\|\phi\| = 1$. It is easily seen that

$$(H-\lambda_o)\phi = \int_{a}^{b} (\lambda-\lambda_o)dE(\lambda)\phi$$

(cf. the proof of Theorem II.6.2). If we choose $\Delta = [\lambda_0 - \epsilon, \lambda_0 + \epsilon]$ for some $\epsilon > 0$, we get

$$\| (H^{-\lambda}_{O}) \varphi \|^{2} = \int_{\lambda_{O} - \varepsilon}^{\lambda_{O} + \varepsilon} (\lambda - \lambda_{O})^{2} d(E(\lambda) \varphi, \varphi)$$

$$\leq \varepsilon^{2}.$$

Thus, for any $\varepsilon > 0$, there is a $\phi_{\varepsilon} \in \mathcal{D}(H)$ with $\|\phi_{\varepsilon}\| = 1$ and $\|(H^{-\lambda}_{O})\phi_{\varepsilon}\| \le \varepsilon$. The assumption $\lambda_{O} \in \Sigma(H)$ then contradicts Theorem II.1.2 and it follows: $\lambda_{O} \in S(H)$. In the second part of the proof we assume that

$$\dim ([\lambda_0 - \varepsilon, \lambda_0 + \varepsilon]) = 0$$

for some $\varepsilon > 0$. Let $f \in \mathcal{D}(H)$. Then

$$(H-\lambda_{O})f = \int_{-\infty}^{+\infty} (\lambda-\lambda_{O}) dE(\lambda)f,$$

$$\| (H-\lambda_0) f \|^2 = \int_{-\infty}^{+\infty} (\lambda - \lambda_0)^2 d(E(\lambda) f, f).$$

Let $\lambda_0^{-\epsilon} \leq \lambda_1^{-\epsilon} < \lambda_2^{-\epsilon} \leq \lambda_0^{+\epsilon}$. Let us assume that $\|\mathbf{E}(\lambda_2^{-\epsilon})\mathbf{f}_0\|^2 - \|\mathbf{E}(\lambda_1^{-\epsilon})\mathbf{f}_0\|^2 > 0$ for some $\mathbf{f}_0^{-\epsilon} \in \mathcal{H}$. This means that $\|(\mathbf{E}(\lambda_2^{-\epsilon})\mathbf{f}_0\|^2 > 0$ and that $\mathbf{g} = (\mathbf{E}(\lambda_2^{-\epsilon})\mathbf{f}_0^{-\epsilon})\mathbf{f}_0^{-\epsilon} = (\mathbf{E}(\lambda_2^{-\epsilon})\mathbf{f}$

$$\| (H^{-\lambda}_{O}) f \|^{2} = \int_{-\infty}^{\lambda_{O} - \epsilon} (\lambda - \lambda_{O})^{2} d(E(\lambda) f, f) + \int_{\lambda_{O} + \epsilon}^{+\infty} (\lambda - \lambda_{O})^{2} d(E(\lambda) f, f),$$

$$\geq \epsilon^{2} (\int_{-\infty}^{\lambda_{O} - \epsilon} d(E(\lambda) f, f) + \int_{\lambda_{O} + \epsilon}^{+\infty} d(E(\lambda) f, f)),$$

$$= \varepsilon^{2} \int_{-\infty}^{+\infty} d(E(\lambda)f, f),$$

$$= \varepsilon^{2} ||f||^{2}.$$

From Theorem II.1.2 it follows that $\lambda _{\mbox{\scriptsize o}} \in \Sigma \left(H\right) .$ Our theorem is proved.

Definition II.7.2: Let T be a linear operator in a Hilbert space H with domain of definition $\mathcal{D}(T)$. A complex number λ_{O} is called eigenvalue of T if there is a $\phi \neq 0$, $\phi \in \mathcal{D}(T)$, with $T\phi = \lambda_{O}\phi$.

The eigenvalues of a selfadjoint operator are characterized as follows:

Theorem II.7.2: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. All eigenvalues of H are real. λ_{O} IR is an eigenvalue of H if and only if E(.)x is not for every x $\in H$ continuous from the left in λ_{O} .

Theorem II.7.2 can be reformulated in the following way. As it was pointed out in the beginning of § 3, the limit

lim
$$(E(\lambda-\varepsilon)x,y)$$
, $x,y \in H$, $\varepsilon \to 0$, $\varepsilon > 0$

exists. It follows that

$$\lim_{\varepsilon \to 0, \ \varepsilon > 0} E(\lambda - \varepsilon) x, x \in H,$$

exists. We call it $E(\lambda-0)x$. Thus $E(\lambda-0)\in L(\mathcal{H},\mathcal{H})$, $\|E(\lambda-0)\|^2\leq 1$, $E^2(\lambda-0)=E(\lambda-0)$, and $E(\lambda-0)$ is hermitian. The criterion in Theorem II.7.2 can now be written as

$$E(\lambda_{O}) - E(\lambda_{O} - O) + O.$$

<u>Proof of Theorem II.7.2:</u> Let first $E(\lambda_0) - E(\lambda_0 - 0) \neq 0$. Then there is an $f_0 \in H$ with

$$(E(\lambda_0)-E(\lambda_0-0))f_0 = g_0 \neq 0.$$

Let ϵ' , ϵ'' >0. We consider $(E(\lambda_0 + \epsilon') - E(\lambda_0 - \epsilon'))g_0$. If $0 < \delta \le \epsilon'$, ϵ'' we have

$$(E(\lambda_{O} + \epsilon') - E(\lambda_{O} - \epsilon')) (E(\lambda_{O} + \delta) - E(\lambda_{O} - \delta)) =$$

$$= E(\lambda_{O} + \delta) - E(\lambda_{O} - \delta).$$

Thus

$$(E(\lambda_{o} + \epsilon') - E(\lambda_{o} - \epsilon')) g_{o}$$

$$= (E(\lambda_{o} + \epsilon') - E(\lambda_{o} - \epsilon')) \cdot \lim_{\substack{\delta \to 0, \\ \delta > 0}} (E(\lambda_{o} + \delta) - E(\lambda_{o} - \delta)) f_{o},$$

$$= \lim_{\substack{\delta \to 0, \\ \delta > 0}} (E(\lambda_{o} + \delta) - E(\lambda_{o} - \delta)) f_{o}$$

$$= g_{o},$$

$$(H - \lambda_{o}) g_{o} = \int_{-\infty}^{+\infty} (\lambda - \lambda_{o}) dE(\lambda) g_{o},$$

$$= \int_{\lambda_{o} - \epsilon'} (\lambda - \lambda_{o}) dE(\lambda) g_{o},$$

$$\| (H - \lambda_{o}) g_{o} \|^{2} = \int_{\lambda_{o} - \epsilon'} (\lambda - \lambda_{o})^{2} d(E(\lambda) g_{o}, g_{o})$$

$$\leq \max(\epsilon'^{2}, \epsilon''^{2}) \| g_{o} \|^{2},$$

 $Hg_0 = \lambda_0 g_0$

Since ϕ_0 = 0 we have shown that λ_0 is an eigenvalue. Secondly let us assume that λ_0 is an eigenvalue of H and that ϕ_0 is an element of $\mathcal{D}(H)$ with ϕ_0 = 0, $H\phi_0 = \lambda\phi_0$. Then

$$O = \| (H^{-\lambda}_{O}) \varphi_{O} \|^{2} = \int_{-\infty}^{+\infty} (\lambda - \lambda_{O})^{2} d(E(\lambda) \varphi_{O}, \varphi_{O}).$$

If $\Delta = [a,b]$ is chosen in such a way that $\lambda \in \Delta$, then

$$0 \ge \int_{a}^{b} (\lambda - \lambda_{o})^{2} d(E(\lambda) \phi_{o}, \phi_{o}),$$

$$\geq \operatorname{dist}^{2}(\lambda_{0}, \Delta) \int_{a}^{b} d(E(\lambda)\phi_{0}, \phi_{0}),$$

= dist²(
$$\lambda_{o}$$
, Δ)||E(Δ) ϕ_{o} ||².

Varying Δ we see that $E(\lambda)\phi_O$ is constant if either $\lambda > \lambda_O$ or $\lambda < \lambda_O$. Since $\lim_{\lambda \to -\infty} E(\lambda)\phi_O = 0$ we get $E(\lambda)\phi_O = 0$, $\lambda < \lambda_O$. Since $\lim_{\lambda \to +\infty} E(\lambda)\phi_O = \phi_O$ and since $E(\lambda)\phi_O$ is continuous from the right we arrive at $E(\lambda)\phi_O = \phi_O$, $\lambda \ge \lambda_O$. In particular

$$E(\lambda_{O}) - E(\lambda_{O} - O) \neq O$$

and our theorem is proved.

Theorem II.7.3: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Let $\Delta = [a,b]$ with $-\infty < a < b < +\infty$. Let the dimension of $\mathcal{W}(\Delta) = E(\Delta)H$ be a finite number, say m with m > 0. Then there are m pairwise orthonormal eigenvectors ϕ_1, \ldots, ϕ_m to H with eigenvalues $\lambda_1, \ldots, \lambda_m$, i.e. $H\phi_i = \lambda_i \phi_i$, $1 \le i \le m$. Moreover, the ϕ_1, \ldots, ϕ_m span $\mathcal{W}(\Delta)$, and for the eigenvalues $\lambda_1, \ldots, \lambda_m$ the inequality

0

$$a < \lambda_i \le b$$
, $i = 1, \dots, m$,

holds.

Proof: Let $f \in \mathcal{M}(\Delta)$. Then

$$Hf = HE(\Delta)f = \int_{a}^{b} \lambda dE(\lambda)f$$

$$= E(\Delta)Hf$$

(cf. the proof of Theorem II.6.2). Thus $\operatorname{H} \mathfrak{M}(\Delta) \subset \mathfrak{M}(\Delta)$ and $\mathfrak{M}(\Delta)$ is an "invariant subspace under H". The restriction of H to $\mathfrak{M}(\Delta)$ can thus be considered as a (bounded) linear hermitian mapping from $\mathfrak{M}(\Delta)$ into itself. Consequently $\mathfrak{M}(\Delta)$ has an orthonormal basis $\{\phi_1,\ldots,\phi_m\}$ with

$$H\phi_{i} = \lambda_{i}\phi_{i}, \quad 1 \leq i \leq m,$$

and real numbers $\lambda_1, \dots, \lambda_m$. We have

$$(H\phi_{\mathbf{i}},\phi_{\mathbf{i}}) = \lambda_{\mathbf{i}} = \int_{a}^{b} \lambda d(E(\lambda)\phi_{\mathbf{i}},\phi_{\mathbf{i}}),$$

$$a \leq \lambda_{\mathbf{i}} \leq b.$$

Let us assume that one of the numbers $\lambda_1,\dots,\lambda_m$ equals a, say λ_1 . Then $(E(\lambda_1)-E(\lambda_1-0))\phi_1=(E(a)-E(a-0))\phi_1 \neq 0$ as was shown in the second part of the proof of Theorem II.7.2. On the other hand, since $\phi_1=(E(b)-E(a))\phi_1$, we get

$$(E(a)-E(a-O))\phi_1 = O,$$

which is a contradiction. The theorem is proved.

In the definition to follow we decompose the spectrum of a selfadjoint operator.

Definition II.7.3: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. Let $\{E(\lambda) \mid \lambda \in IR\}$ be the spectral family belonging H. A real number λ_0 belongs to the essential spectrum $S_e(H)$ of H if and only if the subspace $\{\Pi(\Delta) \mid E(\Delta)\}$ has infinite dimension for any compact interval Δ with $\lambda \in \Delta$.

Definition II.7.4: Let H be as in the preceding definition. A real number λ_0 belongs to the discrete part $S_d(H)$ of the spectrum of H if and only if there is a compact interval Δ with $\lambda_0 \in \stackrel{\circ}{\Delta}$ and

$$0 < \dim \mathcal{W}(\Delta) < +\infty$$
,

$$1 \leq \dim \mathcal{M}([\lambda_0 - \varepsilon, \lambda_0 + \varepsilon])$$

for all
$$\varepsilon > 0$$
 with $[\lambda_0 - \varepsilon, \lambda_0 + \varepsilon] \subseteq \Delta$.

Definition II.7.5: We say that $+\infty$ belongs to the essential spectrum of a selfadjoint operator H in H as in the preceding definitions if and only if the spaces

$$(I-E(N))H$$
, $N \in IN$,

have infinite dimension. We say that $-\infty$ belongs to the essential spectrum of H if and only if the spaces

$$E(-N)\mathcal{H}$$
, $N \in IN$

have infinite dimension.

Theorem II.7.1 shows that $S_d(H) \subset S(H)$. Then

$$S(H) \cup \{\pm \infty\} = (S_e(H) \cup \{\pm \infty\}) \cup S_d(H)$$

$$S_{e}(H) \cap S_{d}(H) = \emptyset.$$

Theorem II.7.4: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. Let $\lambda_0 \in S_d(H)$. Then λ_0 is an eigenvalue of H and an isolated point of S(H), i.e. there is an $\epsilon > 0$ such that $[\lambda_0 - \epsilon, \lambda_0 + \epsilon] \cap S(H) = \{\lambda_0\}$.

<u>Proof:</u> Let $\lambda_0 \in S_d(H)$. Set

$$V = \bigcap_{\substack{n \ge n \\ n \in IN}} \mathcal{M}([\lambda_0 - \frac{1}{n}, \lambda_0 + \frac{1}{n}])$$

with n_O sufficiently large. The sequence $\{\dim ([\lambda - \frac{1}{n}, \lambda_O + \frac{1}{n}])\}$ assumes the value $\min \{\dim ([\lambda_O - \frac{1}{n}, \lambda_O + \frac{1}{n}]) \mid n \ge n_O\} \ge 1$ infinitely many times. Thus V has finite dimension ≥ 1 , and in particular

$$V = M([\lambda_0 - \frac{1}{n}, \lambda_0 + \frac{1}{n}]), n \ge n_1.$$

Consequently there is a $g_0 \in V-\{0\}$ and there are $f_n \in H$, $n \ge n_1$, with

$$(E(\lambda_{0} + \frac{1}{n}) - E(\lambda_{0} - \frac{1}{n})) f_{n} = g_{0}, n \ge n_{1}.$$

If ϵ'' , $\epsilon' > 0$ we have

$$(E(\lambda_{O} + \epsilon') - E(\lambda_{O} - \epsilon')) (E(\lambda_{O} + \frac{1}{n}) - E(\lambda_{O} - \frac{1}{n})) f_{n} =$$

$$= (E(\lambda_{O} + \epsilon') - E(\lambda_{O} - \epsilon')) g_{O},$$

$$= (E(\lambda_{O} + \frac{1}{n}) - E(\lambda_{O} - \frac{1}{n})) f_{n}$$

$$= g_{O}, \quad n \ge n_{2}(\epsilon'', \epsilon').$$

Now it is easily seen as in the proof of Theorem II.7.2 that $Hg_O = \lambda_O g_O$. Thus λ_O is an eigenvalue of H. Let us take the interval Δ of Definition II.7.4 with $\lambda_O \in \Delta$. We set $\Delta = [a,b]$.

Let $\mu \in S(H) \cap (a,b)$. As before it is possible to prove that μ is an eigenvalue of H. Evidently μ is also an eigenvalue of the restriction of H to $\mathfrak{M}(\Delta)$: The latter is an "invariant subspace under H" as was shown in the proof of Theorem II.7.3. The eigenvalues of this restriction consist of $\lambda_1, \ldots, \lambda_m$ and have been constructed in Theorem II.7.3. Thus $\mu \in \{\lambda_1, \ldots, \lambda_m\}$, a < μ < b, and our theorem is proved.

The proof of Theorem II.7.4 not only shows that any $\lambda_0 \in S_d(H)$ is an eigenvalue of H and an isolated point of S(H) but also that λ_0 has finite multiplicity, i.e. the vector space $\widetilde{V} = \{g \mid g \in \mathcal{D}(H), Hg = \lambda_0 g\}$ is a finite dimensional (and therefore closed) subspace of H: As in the proof of Theorem II.7.2 we can show that

$$E(\Delta)g = g, g \in \widetilde{V},$$

provided $\lambda_{\mbox{ o}}$ is contained in the open kernel Δ of the compact interval $\Delta.$ Thus

 $\widetilde{V} \subset E(\Delta)H$.

Next we prove the criterion of H. Weyl concerning the essential spectrum of H.

Theorem II.7.5: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. A real number λ_{o} belongs to the essential spectrum $S_{e}(H)$ of H if and only if there is a sequence $\{\phi_{i}\}$ of elements $\phi_{i}\in\mathcal{D}(H)$ with the following properties:

$$\|\varphi_{\mathbf{i}}\| = 1, \mathbf{i} \in \mathbb{N},$$

$$\varphi_{\mathbf{i}} \to 0, \mathbf{i} \to \infty,$$

$$(H^{-\lambda}_{0})\varphi_{\mathbf{i}} \to 0, \mathbf{i} \to \infty.$$

<u>Proof:</u> First we assume that $\lambda_{o} \in S_{e}(H)$. Set

$$\Delta_n = [\lambda_0 - \frac{1}{n}, \lambda_0 + \frac{1}{n}], n \in \mathbb{N}.$$

Then dim $\mathfrak{W}(\Delta_n) = +\infty$. Therefore there is a sequence $\{\phi_i\}$ with

$$\phi_{i} \in \mathcal{W}(\Delta_{i}), i \in \mathbb{N},$$

$$\|\phi_{i}\| = 1, i \in \mathbb{N},$$

$$(\phi_{i}, \phi_{k}) = 0, i \neq k,$$

$$\phi_{i} \rightarrow 0, i \rightarrow \infty.$$

Then

$$\| (\mathbf{H} - \lambda_{o}) \varphi_{\mathbf{i}} \|^{2} = \int_{-\infty}^{+\infty} (\lambda - \lambda_{o})^{2} d(\mathbf{E}(\lambda) \varphi_{\mathbf{i}}, \varphi_{\mathbf{i}}),$$

$$= \int_{0}^{\lambda_{o} + \frac{1}{\mathbf{i}}} (\lambda - \lambda_{o})^{2} d(\mathbf{E}(\lambda) \varphi_{\mathbf{i}}, \varphi_{\mathbf{i}}),$$

$$\lambda_{o} - \frac{1}{\mathbf{i}}$$

$$\leq \frac{1}{\mathbf{i}^{2}},$$

$$(H^{-\lambda}_{O})\phi_{i} \rightarrow O, i \rightarrow \infty.$$

¹ c.f. the remark after this proof.

Secondly we assume that the criterion of the present theorem is fulfilled. If $\lambda_0 \notin S_e(H)$ then there is an $\epsilon > 0$ such that

$$\dim \mathcal{M}([\lambda_0 - \varepsilon, \lambda_0 + \varepsilon]) < +\infty.$$

We have

$$\begin{split} & \| (\mathbf{H} - \lambda_{\mathbf{O}}) \varphi_{\mathbf{i}} \|^{2} \geq \\ & \stackrel{\lambda}{>}_{\mathbf{O}} - \varepsilon \\ & \stackrel{\downarrow}{>}_{\mathbf{O}} (\lambda - \lambda_{\mathbf{O}})^{2} \mathbf{d} (\mathbf{E}(\lambda) \varphi_{\mathbf{i}}, \varphi_{\mathbf{i}}) + \int_{\lambda_{\mathbf{O}} + \varepsilon}^{+\infty} (\lambda - \lambda_{\mathbf{O}})^{2} \mathbf{d} (\mathbf{E}(\lambda) \varphi_{\mathbf{i}}, \varphi_{\mathbf{i}}) \\ & \stackrel{\lambda}{>}_{\mathbf{O}} - \varepsilon \\ & \stackrel{\lambda}{>}_{\mathbf{O}} - \varepsilon \\ & \stackrel{\downarrow}{\sim} (\mathbf{f}_{\mathbf{O}} - \varepsilon) \varphi_{\mathbf{i}} \|^{2} + \| (\mathbf{f} - \mathbf{E}(\lambda_{\mathbf{O}} + \varepsilon)) \varphi_{\mathbf{i}} \|^{2}), \\ & = \varepsilon^{2} (\| \mathbf{E}(\lambda_{\mathbf{O}} - \varepsilon) \varphi_{\mathbf{i}} \|^{2} + \| (\mathbf{f} - \mathbf{E}(\lambda_{\mathbf{O}} + \varepsilon)) \varphi_{\mathbf{i}} \|^{2}), \\ & = \varepsilon^{2} (\| \mathbf{E}(\lambda_{\mathbf{O}} - \varepsilon) \varphi_{\mathbf{i}} \|^{2} + \| \varphi_{\mathbf{i}} \|^{2} - \| \mathbf{E}(\lambda_{\mathbf{O}} + \varepsilon) \varphi_{\mathbf{i}} \|^{2}), \\ & = \varepsilon^{2} (1 - (\| \mathbf{E}(\lambda_{\mathbf{O}} + \varepsilon) - \mathbf{E}(\lambda_{\mathbf{O}} - \varepsilon)) \varphi_{\mathbf{i}} \|^{2}), \\ & = \varepsilon^{2} (1 - \| (\mathbf{E}(\lambda_{\mathbf{O}} + \varepsilon) - \mathbf{E}(\lambda_{\mathbf{O}} - \varepsilon)) \varphi_{\mathbf{i}} \|^{2}). \end{split}$$

The operator $E(\lambda_0 + \epsilon) - E(\lambda_0 - \epsilon)$ is the projection of $\mathcal H$ onto a finite dimensional subspace of $\mathcal H$ and therefore completely continuous. From $\phi_i \to 0$, $i \to \infty$ we thus infer that

$$(E(\lambda_{O} + \varepsilon) - E(\lambda_{O} - \varepsilon))\phi_{i} \rightarrow 0, i \rightarrow \infty.$$

If $i \ge i_0$ we obtain

$$\| (H-\lambda_0) \varphi_i \| \geq \frac{\varepsilon}{2}$$

which is a contradiction to our assumption. Our theorem is proved.

We want to make a <u>remark</u> concerning the construction of the orthonormal sequence in the first part of the preceding proof. If we set $\Delta_n^{(1)} = [\lambda_0 - \frac{1}{n}, \lambda_0 - \frac{1}{n+1}], \ \Delta_n^{(2)} = [\lambda_0 + \frac{1}{n+1}, \lambda_0 + \frac{1}{n}], \ \text{then}$

$$\Delta_n - \Delta_{n+1} = \Delta_n^{(1)} \cup \Delta_n^{(2)}$$
.

We distinguish two cases. First we assume that there is a sequence $\{n_j\}$ of indices with $\mathcal{M}(\Delta_{n_j}^{(1)}) * \{0\}$ or $\mathcal{M}(\Delta_{n_j}^{(2)}) * \{0\}$. Then we choose a $\phi_n * 0$ in $\mathcal{M}(\Delta_{n_j}^{(1)})$ or in $\mathcal{M}(\Delta_{n_j}^{(2)})$. We can assume that $\|\phi_n\| = 1$. Since $\mathcal{M}(\Delta_{n_j}^{(i)})$ and $\mathcal{M}(\Delta_{n_k}^{(1)})$ are pairwise orthogonal if i * 1 or j * k it follows that the ϕ_n are pairwise orthogonal. Bessel's inequality

$$\|f\|^2 \ge \sum_{j=1}^{\infty} |(f, \varphi_n_j)|^2$$

shows that $\phi_n \to 0$, $j \to \infty$. Secondly we have the possibility that

$$\mathcal{M}(\Delta_n^{(1)}) = \mathcal{M}(\Delta_n^{(2)}) = \{0\}, n \ge n_0.$$

Then $(0, \Delta_n) = (0, \Delta_{n_0+1}) = \dots$. We choose a complete orthonormal system in $(0, \Delta_{n_0})$, say $\{\phi_{n_0}, \phi_{n_0+1}, \dots\}$. Then $\phi_i \in (0, \Delta_i)$, $i = n_0, n_0+1, \dots$, and again Bessel's inequality gives $\phi_i \to 0$, $i \to \infty$.

Proposition II.7.1: Let H be selfadjoint in H with domains of definition $\mathcal{D}(H)$. Let $\lambda_0 \in \mathbb{R}$ and let λ_0 be an accumulation point of S(H). Then $\lambda_0 \in S_e(H)$.

<u>Proof:</u> We choose a sequence $\{\lambda_n\}$ of pairwise distinct numbers $\lambda_n \in S(H)$ with $\lambda_n \to \lambda_0$, $n \to \infty$. To each λ_n we assign an interval $\Delta_n = [a_n, b_n]$ such that $\lambda_n \in \Delta_n$, $\Delta_n \cap \Delta_m = \emptyset$, $n \neq m$. Then any interval $\Delta_n = [a,b]$ with $\lambda_0 \in \Delta$ contains infinitely many intervals Δ_n , say Δ_n , Δ_n , We have

$$\mathcal{W}(\Delta) \Rightarrow \bigcup_{j=1}^{\infty} \mathcal{W}(\Delta_{n_j})$$

with dim $(\Delta_{n_j}) \ge 1$,

$$\mathfrak{M}(\Delta_{\mathbf{n}_{\mathbf{j}}})\ \perp \mathfrak{M}(\Delta_{\mathbf{n}_{\mathbf{k}}})\ ,\ \mathtt{j}\ \mathtt{*k}.$$

Thus dim $\mathfrak{M}(\Delta) = +\infty$.

Proposition II.7.2: Let H be selfadjoint in H with domain of definition $\mathcal{D}(H)$. Let $\Delta = [a,b] \subset \Sigma(H)$. Then

0

$$E(b) = E(\lambda) = E(a), a \le \lambda \le b.$$

<u>Proof:</u> According to Theorem II.7.1 for any $\lambda \in [a,b]$ there is an $\Delta_{\lambda} = [a_{\lambda}, b_{\lambda}]$ with

$$\lambda \in (a_{\lambda}, b_{\lambda})$$
,

$$\mathcal{M}(\Delta_{\lambda}) = \{0\}.$$

Since

$$[a,b] \subset U (a_{\lambda},b_{\lambda}),$$

 $\lambda \in [a,b]$

the compactness of [a,b] implies

$$[a,b] \subset \bigcup_{j=1}^{N} (a_{\lambda_j},b_{\lambda_j}).$$

Without loss of generality we can assume that a \in (a_{λ 1},b_{λ 1}). Since $\mathcal{M}(\Delta_{\lambda_1})=\{0\}$ we have

$$E(\lambda) = E(a_{\lambda_1}) = E(b_{\lambda_1}), a_{\lambda_1} \le \lambda \le b_{\lambda_1}.$$

If $a_{\lambda_1} < a_{\lambda_2} < b_{\lambda_1} < b_{\lambda_2}$ we also get

$$E(\lambda) = E(a_{\lambda_1}) = E(b_{\lambda_1}),$$

$$= E(a_{\lambda_2}) = E(b_{\lambda_2}), a_{\lambda_1} \le \lambda \le b_{\lambda_2},$$

and so on.

Proposition II.7.3: Let H be a selfadjoint operator in H with domain of definition $\mathcal{D}(H)$. Let λ \in IR be an eigenvalue of H. Then

$$\{\phi | \phi \in \mathcal{D}(H), H\phi = \lambda_{O}\phi\} = (E(\lambda_{O}) - E(\lambda_{O} - O))H.$$

<u>Proof:</u> The second part of the proof of Theorem II.7.2 shows that

$$\{\phi \,|\, \phi \in \mathcal{D} \,(H) \;,\;\; H\phi = \lambda_{O} \phi \} \;\subset\; (E \,(\lambda_{O}) - E \,(\lambda_{O} - O) \,) \,\mathcal{H}.$$

If on the other hand

$$g = (E(\lambda_0) - E(\lambda_0 - 0)) f,$$

where f is any element from H, then the first part of the proof of Theorem II.7.2 yields $Hg = \lambda_{O}g$.

Proposition II.7.4: Let \mathcal{H} be a bounded hermitian operator in \mathcal{H} with domain of definition $\mathcal{D}(\mathcal{H}) = \mathcal{H}$. Then \mathcal{H} is selfadjoint, and if

N > ||H||,

then

$$H = \int_{-N}^{+N} \lambda dE(\lambda),$$

where $\{E(\lambda) \mid \lambda \in IR\}$ is the accompanying spectral family and where the integral is taken in L(H,H).

Proof: We have

$$|| (H+\lambda) f|| \ge |\lambda| || f|| - N|| f||,$$

$$\ge (|\lambda| - N) || f||.$$

Clearly H is selfadjoint. Thus, by Theorem II.1.2, we see that $\{\lambda \mid \lambda > N\} \subset \Sigma$ (H). The continuity from the right of $E(\lambda)x$, $x \in \mathcal{H}$, furnishes, together with Proposition II.7.2, that $E(\lambda) = I$, $\lambda \geq N$. Again by Theorem II.1.2 it follows that $\{\lambda \mid \lambda < -N\} \subset \Sigma$ (H) and, by Proposition II.7.2, that $E(\lambda) = 0$, $\lambda \leq -N$. Replacing N by N- ϵ with N- $\epsilon > \|H\|$ and a sufficiently small $\epsilon > 0$ the previous arguments show that $E(\lambda) = 0$, $\lambda \leq -(N-\frac{\epsilon}{2})$, $E(\lambda) = I$, $\lambda \geq N-\epsilon$. This proves the proposition in question.

Now we can characterize compact hermitian operators in terms of its spectra.

Theorem II.7.6: Let H be an hermitian bounded operator in H with domain of definition $\mathcal{D}(H) = H$. Then H is compact if and only if

$$S_{e}(H) = \{0\}.$$

<u>Proof:</u> Let us assume that H is compact, let $\lambda_0 \in S_e(H) \cap IR$. According to Theorem II.7.5 there is a sequence $\{\phi_i\}$ of elements

of H with $\|\phi_i\| = 1$, $\phi_i \to 0$, $i \to \infty$, $\|(H - \lambda_0)\phi_i\| \to 0$, $i \to \infty$. Since H is compact we have $\|H\phi_i\| \to 0$, $i \to \infty$. This implies $\lambda_0 = 0$. The proof of Proposition II.7.4 shows that $\pm \infty \notin S_e(H)$. Now we assume that $\{0\} = S_e(H)$. Let $N > \|H\|$. Then by Proposition II.7.1 we have

(II.7.1) dim
$$M([-N, -\frac{1}{n}]) < +\infty$$
,

(II.7.2) dim
$$m([\frac{1}{n},N]) < +\infty$$
, $n > \frac{1}{N}$, $n \in \mathbb{N}$.

Let us set $\Delta_n^- = [-N, \frac{1}{n}], \Delta_n^+ = [\frac{1}{n}, N]$. The representation

$$Hf = \int_{-N}^{+N} \lambda dE(\lambda)$$

from Proposition II.7.4 infers

$$HE(\Delta_{n}^{+}) f = \int_{1/n}^{N} \lambda dE(\lambda) f$$

$$= E(\Delta_{n}^{+}) Hf,$$

$$HE(\Delta_{n}^{-}) f = \int_{-N}^{-1/n} \lambda dE(\lambda) f$$

$$= E(\Delta_{n}^{-}) Hf.$$

Thus

$$\| (E(\Delta_n^+) + E(\Delta_n^-)) Hf - Hf \| = \| \int_{-1/n}^{1/n} \lambda dE(\lambda) f \|$$

$$\leq \frac{1}{n} \| f \|_{r},$$

$$\lim_{n\to\infty} \|H - (E(\Delta_n^+) + E(\Delta_n^-))H\| = O.$$

(II.7.1) and (II.7.2) show that $E(\Delta_n^+)$, $E(\Delta_n^-)$ are compact. Thus H is compact. Finally $S_e(H) \cap \mathbb{R} \neq \emptyset$. Otherwise $\dim \mathcal{R} < +\infty$.

Corollary to Theorem II.7.6: Let H be a bounded everywhere defined hermitian operator in H. Let H be compact. Then $S_d(H)$ consists of precisely countably many eigenvalues $\lambda_1, \lambda_2, \dots$ with

$$|\lambda_1| \ge |\lambda_2| \ge \cdots > 0$$

and there is a complete orthonormal system $\{\phi_1, \phi_2, \dots, \psi_1, \psi_2, \dots\}$ in \mathcal{H} such that

$$H\phi_n = \lambda_n \phi_n$$
, $H\psi_n = 0$, $n \in IN$.

Here the set $\{\psi_1, \psi_2, \dots\}$ is a complete orthonormal system in the closed subspace $N = \{z \mid Hz = 0\}$ of H, provided $+\infty \ge \dim N \ge 1$. If dim N = 0 then the $\{\phi_1, \phi_2, \dots\}$ form a complete orthonormal system in H.

<u>Proof:</u> Let N > || H||. In $[-N, -\frac{1}{m}]$, $[\frac{1}{m}, N]$, $m \in IN$, $m > \frac{1}{N}$, there are at most finitely many points of S(H) (by Proposition II.7.1), say ${}^{\lambda}1' \cdots {}^{\lambda}k_m$. We can order them:

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{k_m}|$$
.

It's the same with $[-N, -\frac{1}{m+1}]$, $[\frac{1}{m+1}, N]$. The points of S(H) in these two intervals then are $\lambda_1, \dots, \lambda_k, \lambda_m, \lambda_{m+1}$ with

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{k_m}| > |\lambda_{k_m+1}| \ge \cdots \ge |\lambda_{k_{m+1}}|.$$

In this way we proceed. The points $\lambda_1, \lambda_2, \ldots$ are isolated points of S(H). Thus by Proposition II.7.2

$$E(\lambda_{j}) = E(\lambda_{j} + \epsilon),$$

 $E(\lambda_{j} - 0) = E(\lambda_{j} - \epsilon), j = 1, 2, ...,$

provided ϵ is sufficiently small and > 0. Since $+\infty$ > dim $([\lambda_j - \epsilon, \lambda_j + \epsilon]) \ge 1$ by Theorem II.7.1 we obtain $E(\lambda_j) - E(\lambda_j - 0)$ # 0. By Theorem II.7.2 it is seen that λ_j is an eigenvalue of H. The spaces $(E(\lambda_j) - E(\lambda_j - 0))$ H are pairwise orthogonal and have finite dimension. By Proposition II.7.4 there is finite orthonormal system $\{\phi_j^{(1)}, \dots, \phi_j^{(e_j)}\}$ which spans $(E(\lambda_j) - E(\lambda_j - 0))$ H and fulfills $H\phi_j^{(\mu)} = \lambda_j \phi_j^{(\mu)}$, $\mu = 1, \dots, e_j$. We have

$$Hf = \lim_{m \to \infty} (\int_{-N}^{\infty} \lambda dE(\lambda)f + \int_{-N}^{N} \lambda dE(\lambda)f)$$

$$= \lim_{m \to \infty} \sum_{j=1}^{k} \lambda_{j} \sum_{\mu=1}^{\infty} ((E(\lambda_{j})-E(\lambda_{j}-O))f, \phi_{j}^{(\mu)})\phi_{j}^{(\mu)}$$

$$= \lim_{m \to \infty} \sum_{j=1}^{k} \lambda_{j} \sum_{\mu=1}^{\infty} (f, \phi_{j}^{(\mu)})\phi_{j}^{(\mu)}.$$

Let us change enumeration as follows: Instead of $\{\lambda_1,\dots,\lambda_k_m', \lambda_k_{m+1},\dots,\lambda_{k_m+1},\dots\}$ we are going to write $\{\lambda_1,\lambda_2,\dots\}$ and each λ_j appears as often as e_j times. Consequently we write $\{\phi_1,\phi_2,\dots\}$ instead of $\{\phi_1^{(1)},\dots,\phi_1^{(e_1)},\phi_2^{(1)},\dots,\phi_2^{(e_2)},\dots\}$. Then our last formula reads

$$Hf = \sum_{j=1}^{\infty} \lambda_{j} (f, \phi_{j}) \phi_{j},$$

$$= \sum_{j=1}^{\infty} (Hf, \phi_{j}) \phi_{j}.$$

Now take a sequence $\{Hf_n\}$ with $Hf_n \rightarrow g$, $n \rightarrow \infty$. Set $c_j^{(n)} = (f_n, \phi_j)$.

Then by Parseval's inequality

$$\|H(f_n-f_1)\|^2 = \sum_{j=1}^{\infty} |\lambda_j|^2 |c_j^{(n)}-c_j^{(1)}|^2.$$

Thus $c_j^{(n)} \rightarrow d_j$, $n \rightarrow \infty$. Since

$$\|Hf_n\|^2 \ge \sum_{j=1}^K |\lambda_j|^2 |c_j^{(n)}|^2,$$

 $K \in \mathbb{N}$, we obtain that

$$\sum_{j=1}^{\infty} |\lambda_{j}|^{2} |d_{j}|^{2} < \infty.$$

Setting

$$\widetilde{g} = \sum_{j=1}^{\infty} \lambda_{j} d_{j} \varphi_{j}$$

we thus see that $\mathrm{Hf}_{n} \to \widetilde{\mathsf{g}}$, $n \to \infty$. Consequently $\mathsf{g} = \widetilde{\mathsf{g}}$. Since

$$\lambda_{j}d_{j} = \lim_{n \to \infty} \lambda_{j}c_{j}^{(n)},$$

$$= \lim_{n \to \infty} (Hf_{n}, \phi_{j}) = (g, \phi_{j})$$

we end up with the expansion

$$g = \sum_{j=1}^{\infty} (g, \varphi_j) \varphi_j$$

if g is in the closure of R(H) in H.

Finally we choose a complete orthonormal system $\{\psi_1, \psi_2, \ldots\}$ in the closed subspace N of H. Since for any $\widetilde{g} \in H$ there exist a $z \in N$ and a $g \in \overline{R(H)}$ with $\widetilde{g} = z + g$ we have shown that $\{\phi_1, \phi_2, \ldots, \psi_1, \psi_2, \ldots\}$ is a complete orthonormal system in H. So far we have tacitly assumed that $+\infty \ge \dim N \ge 1$. If dim N = 0

then the $\{\phi_1,\phi_2,\dots\}$ already form a complete orthonormal system in $\mathcal{H}.$

For the sake of completeness we briefly touch the behaviour of the spectrum under a compact perturbation of a selfadjoint operator.

Definition II.7.6: Let A and B be two linear operators in H with $\mathcal{D}(A) = \mathcal{D}(B)$. Then the operator B is called compact with respect to A (A-compact) if and only if the following holds: Let (u_k) be a sequence with $u_k \in \mathcal{D}(A)$, $k \in \mathbb{N}$, $\|u_k\| + \|Au_k\| \le D$ for $k \in \mathbb{N}$ and some D > O. Then there is a subsequence (u_k) of (u_k) such that

 $\lim_{1\to\infty} Bu_{k_1} \xrightarrow{\text{exists}}$

Theorem II.7.7: Let A be selfadjoint in \mathcal{H} with domain of definition $\mathcal{D}(A)$. Let B be an hermitian operator in \mathcal{H} with $\mathcal{D}(B) = \mathcal{D}(A)$, which is A-compact. We define C by setting

 $Cu = Au + Bu, u \in \mathcal{D}(A)$.

Let C be selfadjoint. Then

 $S_{e}(A) \cap IR \subset S_{e}(C) \cap IR$.

Proof: Let $^{\lambda}_{\ o}$ ES $_{e}$ (A) N IR. According to Theorem II.7.5 there is a sequence $\{\phi_{k}\}$ with

$$\begin{split} \|\,\phi_{\mathbf{k}}^{}\| &= 1\,,\ \mathbf{k}\,\in\,\mathrm{I\!N}\,,\\ \phi_{\mathbf{k}}^{} &\in\,\mathcal{D}\,(\mathrm{A})\,,\ \mathbf{k}\,\in\,\mathrm{I\!N}\,, \end{split}$$

$$\varphi_{k} \rightarrow 0, k \rightarrow \infty,$$

$$\| (A-\lambda_{0}) \varphi_{k} \| \rightarrow 0, k \rightarrow \infty.$$

Firstly we see that $\|\phi_k\| + \|A\phi_k\| \le D$, $k \in \mathbb{N}$, for some D > 0. Since B is A-compact there is a subsequence (ϕ_k) of (ϕ_k) with $B\phi_k \to f$, $j \to \infty$. Let $g \in \mathcal{D}(A)$. Then $(f,g) = \lim_{j \to \infty} (B\phi_k, g) = \lim_{j \to \infty} (\phi_k, Bg) = 0$. This implies f = 0. Now $j \to \infty$

$$\|C\phi_{k_{j}}^{-\lambda} \circ \phi_{k_{j}}\| \le \|A\phi_{k_{j}}^{-\lambda} \circ \phi_{k_{j}}\| + \|B\phi_{k_{j}}\|,$$

and the right hand side tends to 0 if $j \to \infty$. Thus $\lambda_0 \in S_e(C)$.

If A is selfadjoint in H and has domain of definition $\mathcal{D}(A)$ and if B is bounded hermitian in H with $\mathcal{D}(B) = H$, then it is easily seen that the operator C defined by Cu = Au + Bu, $u \in \mathcal{D}(C) = \mathcal{D}(A)$, is selfadjoint in H. If V = B is even compact then Theorem II.7.7 shows that

$$S_e(A+V) \cap IR \subset S_e((A+V)-V) \cap IR$$
,
= $S_e(A) \cap IR$.

On the other hand

$$S_e(A) \cap IR \subset S_e(A+V) \cap IR$$
,

where we have used again Theorem II.7.7. Thus we end up with

(II.7.3)
$$S_{\rho}(A+V) \cap IR = S_{\rho}(A) \cap IR$$

for compact V.

We now consider selfadjoint operators having a discrete spectrum. This notion is made more precise in

Definition II.7.7: Let A be selfadjoint in H with domain of definition $\mathcal{D}(A)$. A is said to have a discrete spectrum if and only if for any compact interval $\Delta = [a,b]$ the inequality

$$\dim \mathcal{M}(\Delta) < +\infty$$

holds.

Selfadjoint operators with discrete spectrum could be characterized in the following way:

Theorem II.7.8: Let A be selfadjoint in # with domain of definition $\mathcal{D}(A)$. A has discrete spectrum if and only if $S_e(A) \subset \{-\infty, +\infty\}$. Moreover A has discrete spectrum if and only if S(A) consists of countably many eigenvalues $\lambda_1, \lambda_2, \ldots$ with

$$\begin{vmatrix} \lambda_1 \end{vmatrix} \le \begin{vmatrix} \lambda_2 \end{vmatrix} \le \dots, \quad \lim_{n \to \infty} \begin{vmatrix} \lambda_n \end{vmatrix} = +\infty,$$

$$1 \le \dim((E(\lambda_1) - E(\lambda_1 - 0))) = e_1 < +\infty.$$

Moreover, then there is an orthonormal system $\{\phi_1,\phi_2,\ldots\}$ of elements $\phi_k \in \mathcal{D}(A)$ such that $A\phi_k = \lambda_k \phi_k$, $k \in \mathbb{N}$, and such that the following expansion holds:

Af =
$$\sum_{k=1}^{\infty} \lambda_k (f, \phi_k) \phi_k$$
, $f \in \mathcal{D}(A)$.

<u>Proof:</u> Let A have discrete spectrum. We consider the intervals $\Delta_n = [n,n+1]$, $n \in \mathbb{Z}$. As was pointed out in the proof of Theorem II.7.4 the intersection of S(A) with (n,n+1] consists of at most finitely many eigenvalues $\lambda_1^{(n)}, \dots, \lambda_n^{(n)}$ with $1 \le \dim ((E(\lambda_j^{(n)}) - E(\lambda_j^{(n)} - 0)) \mathcal{H}) < +\infty$, $j = 1, \dots, k_n$. We can order them as described in the theorem in question and get that S(A) consists of at most countably many eigenvalues $\lambda_1, \lambda_2, \dots$ with $|\lambda_1| \le |\lambda_2| \le \dots$

Now let us assume that S(A) is bounded, say $S(A) \subset [-M+\epsilon,M-\epsilon]$ for some $\epsilon > 0$. Then

Af =
$$\int_{-M}^{+M} \lambda dE(\lambda) f$$
.

[-M+ ϵ ,M- ϵ] NS(A) contains at most finitely many pairwise distinct eigenvalues, say $\lambda_1,\ldots,\lambda_N$, with $1\leq e_1,\ldots,e_N<+\infty$. Otherwise [-M+ ϵ ,M- ϵ] would contain an accumulation point of eigenvalues. By Proposition II.7.1 this is a point of S_e(A) and by Definition II.7.5 this contradicts our assumption that A has discrete spectrum. As in the proof of the Corollary to Theorem II.7.6 we obtain the expansion

$$Af = \sum_{k=1}^{N} \lambda_{k} \sum_{\mu=1}^{e_{k}} (f, \phi_{k}^{(\mu)}) \phi_{k}^{(\mu)}, f \in \mathcal{D}(A),$$

where the $\phi_k^{(1)}$,..., $\phi_k^{(2)}$ are an orthonormal basis of $(E(\lambda_k) - E(\lambda_k - 0))H$. In particular A admits a bounded hermitian extension to H and the range of this extension is contained in the finite dimensional subspace being spanned by the $\phi_k^{(\mu)}$. Since A is self-adjoint this extension coincides with A (cf. Proposition I.3.5) and moreover A is compact. Thus $0 \in S_e(A)$. This contradicts our assumption. Thus S(A) is unbounded and $\lim_{n \to \infty} |\lambda_n| = +\infty$. From the not second criterion it immediately follows that $S_e(A) \subset \{-\infty, +\infty\}$. From this inclusion we get in turn that A has discrete spectrum. As for the expansion we have

$$\begin{aligned} &\text{Af} &= \lim_{M \to \infty} \int\limits_{-M}^{M} \lambda \, dE(\lambda) \, f, \\ &= \lim\limits_{N \to \infty} \sum\limits_{k=1}^{N} \lambda_k \sum\limits_{\mu=1}^{\Sigma} (f, \phi_k^{(\mu)}) \phi_k^{(\mu)}. \end{aligned}$$

If in the sequence $\{\lambda_1, \lambda_2, \dots\}$ each eigenvalue is as often repeated as its multiplicity e prescribes we get the expansion of the theorem.

Theorem II.7.9 (Rellich, Friedrichs): Let A be selfadjoint in H with domain of definition $\mathcal{D}(A)$. A has discrete spectrum if and only if each sequence $(\widetilde{\phi}_k)$ with

$$\widetilde{\phi}_k \in \mathcal{D}(A)$$
, $k \in IN$,
$$\|\widetilde{\phi}_k\|^2 + \|A\widetilde{\phi}_k\|^2 \le D^2 \text{ for some } D > 0 \text{ and all } k \in IN$$

contains a convergent subsequence.

<u>Proof:</u> Let A have a discrete spectrum. We take the expansion in Theorem II.7.8 and set

$$x_k = (x, \phi_k), x \in H.$$

Then, if $x \in \mathcal{D}(A)$, we get

$$\sum_{k=1}^{\infty} \lambda_k^2 |x_k|^2 = \|Ax\|^2,$$

$$\sum_{k=1}^{\infty} |x_k|^2 \le ||x||^2.$$

If $(x^{(p)})$ is a sequence with the properties stated in the theorem we thus get

(II.7.4)
$$\sum_{k=1}^{\infty} (1+\lambda_k^2) |x_k^{(p)}|^2 \le D^2$$
, $p \in \mathbb{N}$;

in particular $\|\hat{x}^{(p)}\|^2 \le D^2$ for some D > O, where we have set

$$\tilde{x}^{(p)} = \sum_{k=1}^{\infty} x_k^{(p)} \varphi_k.$$

Thus there is a subsequence $(\tilde{x}^{(p_j)})$ of $(\tilde{x}^{(p)})$ such that

$$\sum_{k=1}^{\infty} x_k^{(p_j)} \overline{y}_k \rightarrow \sum_{k=1}^{\infty} x_k^* \overline{y}_k$$

if $j \rightarrow \infty$; here $\{y_1, y_2, \dots\}$ is any sequence of complex numbers with

$$\sum_{k=1}^{\infty} |y_k|^2 < +\infty,$$

and $\{x_1^*, x_2^*, \dots\}$ is some sequence of complex numbers with

$$\sum_{k=1}^{\infty} |x_k^*|^2 < +\infty$$

(cf. the example after Proposition I.3.1). In particular (p,) x_k $\to x_k^*,$ j $\to \infty.$ We set

$$x^* = \sum_{k=1}^{\infty} x_k^* \varphi_k$$

and obtain

$$\|\widetilde{\mathbf{x}}^{(p_{j})} - \mathbf{x}^{*}\|^{2} \leq \sum_{k=1}^{N} |\mathbf{x}_{k}^{(p_{j})} - \mathbf{x}_{k}^{*}|^{2} + 2 \sum_{k=N+1}^{\infty} |\mathbf{x}_{k}^{*}|^{2} + 2 \sum_{k=N+1}^{\infty} |\mathbf{x}_{k}^{*}|^{2} + 2 \sum_{k=N+1}^{\infty} |\mathbf{x}_{k}^{(p_{j})}|^{2}.$$

From (II.7.4) we infer

$$\sum_{k=N+1}^{\infty} |x_k^{(p_j)}|^2 \leq \frac{D^2}{1+\lambda_{N+1}^2}.$$

If ϵ is any positive number we see now with the aid of Theorem II.7.8 that

$$2 \sum_{k=N+1}^{\infty} (|x_k^*|^2 + |x_k^{(p_j)}|^2) \le \frac{1}{2} \varepsilon^2$$

if for N is chosen some fixed integer N(ϵ). Taking j sufficiently large we get

$$\lim_{j\to\infty} x^{(p_j)} = x^*.$$

Finally we show that $\tilde{\mathbf{x}}^{(p)} = \mathbf{x}^{(p)}$. It is left to the reader to show that A has discrete spectrum if and only if A+ γ I has discrete spectrum for any $\gamma \in \mathbb{R}$. In the latter case $S(A) + \gamma := \{\lambda + \gamma \mid \lambda \in S(A)\}$ coincides with $S(A + \gamma I)$. According to Theorem II.7.8 we can choose a $\gamma \in \mathbb{R}$ such that $-\gamma \in \Sigma(A)$, i.e. $A + \gamma I$ admits a bounded everywhere defined inverse. Let $\mathbf{x} \in D(A)$, set

$$x^{(N)} = \sum_{k=1}^{N} x_k \varphi_k$$

Then by Theorem II.7.8

$$(A+\gamma) x^{(N)} = \sum_{k=1}^{N} (\lambda_k + \gamma) x_k \phi_k \rightarrow (A+\gamma) x, N \rightarrow \infty.$$

Since also $x^{(N)} \rightarrow \tilde{x}$, $N \rightarrow \infty$, with

$$\tilde{x} = \sum_{k=1}^{\infty} x_k \phi_k$$

the closedness of A implies $(A+\gamma I)x = (A+\gamma I)\widetilde{x}$. Therefore $x=\widetilde{x}$ and the first direction of our proof is finished. As for the second one assume that the criterion of our theorem holds. If A does not have a discrete spectrum then there is a compact interval $\Delta = [a,b]$ such that dim $\mathfrak{M}(\Delta) = +\infty$. Let (ϕ_k) be an infinite orthonormal system in $\mathfrak{M}(\Delta)$. $E(\Delta)$ commuting with A we have

$$\|\varphi_{k}\|^{2} + \|A\varphi_{k}\|^{2} = \int_{a}^{b} (1+\lambda^{2}) d(E(\lambda)\varphi_{k}, \varphi_{k}),$$

$$\leq \sup_{\lambda \in \Delta} (1+\lambda^{2}) \|\varphi_{k}\|^{2},$$

$$\leq \sup_{\lambda \in \Delta} (1+\lambda^{2}).$$

Therefore there is a subsequence (ϕ_k) of (ϕ_k) which is convergi

gent. Since by Parseval's inequality

$$\|y\|^2 \ge \sum_{k=1}^{\infty} |(\phi_k, y)|^2, y \in H,$$

we can conclude that ϕ_k $\to 0$, $j \to \infty$. Thus ϕ_k $\to 0$, $j \to \infty$ which is a contradiction. Our theorem is proved.

For later use we give the following definition:

Definition II.7.7: Let A be a linear operator in a Hilbert space \mathcal{H} with domain of definition $\mathcal{D}(A)$. A is said to be bounded from below if and only if there is some $\gamma \in \mathbb{R}$ with

$$(Au, u) \ge \gamma \|u\|^2, u \in \mathcal{D}(A).$$

Problem II.7.1: Let A be selfadjoint and bounded from below. Prove: If it is possible to select from every sequence $\{\widetilde{\phi}_k\}$ with

$$\widetilde{\varphi}_{k} \in \mathcal{D}(A)$$
, $\|\widetilde{\varphi}_{k}\| \leq D$, $(A\widetilde{\varphi}_{k}, \widetilde{\varphi}_{k}) \leq D$,

for every $k \in IN$ and some D > 0, a convergent subsequence then A has a discrete spectrum.

<u>Problem II.7.2:</u> Let A be selfadjoint and bounded from below. Let A have a discrete spectrum. Assume that $\gamma \ge 0$ in Definition II.7.7. Prove: If one takes the expansion in Theorem II.7.8 then $\lambda_{\mathbf{k}} \ge 0$,

$$(Ax,x) = \sum_{k=1}^{\infty} \lambda_k |x_k|^2,$$

$$x = \sum_{k=1}^{\infty} x_k \phi_k$$

(for the notations cf. the proof of Theorem II.7.9).

<u>Problem II.7.3:</u> Under the assumptions of Problem II.7.2 prove that every sequence $(\widehat{\phi_k})$ having the properties stated in Problem II.7.1 contains a convergent subsequence.

<u>Problem II.7.4:</u> Remove the assumption $\gamma \ge 0$ in Problem II.7.3.

§ 8. Functions of a Selfadjoint Operator.

The Heinz- Kato Inequality

In this paragraph \mathcal{H} is a separable Hilbert space; A is a selfadjoint operator in \mathcal{H} with domain of definition $\mathcal{D}(A)$ and $\{E(\lambda) \mid \lambda \in \mathbb{R}\}$ is the spectral family which belongs to A. Then the following proposition holds:

Proposition II.8.1: Let $u: \mathbb{R} \to \mathbb{R}$ be continuous. Let $f \in \mathcal{H}$. Then

b
$$+\infty$$

lim $\int u(\lambda)dE(\lambda)f =: \int u(\lambda)dE(\lambda)f$
 $a \to -\infty$, a $-\infty$
 $b \to +\infty$

exists if and only if

$$\lim_{\substack{\lambda \to -\infty, \ a \\ b \to +\infty}} \int_{0}^{\infty} |u(\lambda)|^{2} d(E()f,f) = \iint_{-\infty}^{\infty} |u(\lambda)|^{2} d(E(\lambda)f,f)$$

exists.

Proof: The proof is the same as that of Proposition II.6.1 but with λ replaced by $u(\lambda)$ and with λ^2 replaced by $|u(\lambda)|^2 = u^2(\lambda)$.

It is our aim to define the notion of a function u of a self-adjoint operator. This is done in the theorem to follow:

Theorem II.8.1: Let $u: \mathbb{R} \to \mathbb{R}$ be continuous. Let

$$\mathcal{D}(\mathbf{u}(\mathbf{A})) = \{ \mathbf{f} | \mathbf{f} \in \mathcal{H}, \int_{-\infty}^{+\infty} |\mathbf{u}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f}, \mathbf{f}) < +\infty \}.$$

Then $\mathcal{D}(u(A))$ is a dense linear subspace of \mathcal{H} . The operator u(A), defined by

is selfadjoint.

<u>Proof:</u> The proof is carried through as that of Theorem II.6.1. Again one has to replace λ by $u(\lambda)$.

Up to now we have only considered realvalued functions. For a complex valued function $w: \mathbb{R} \to \mathbb{C}$ being continuous we define

$$\begin{array}{l} u(\lambda) \ = \ \text{Re} \ w(\lambda)\,, \\ v(\lambda) \ = \ \text{Im} \ w(\lambda)\,, \ \lambda \in IR\,, \\ \mathcal{D}(w(A)) \ = \ \mathcal{D}(u(A)) \ \cap \mathcal{D}(v(A)) \\ w(A) \ f \ = \ u(A) \ f + iv(A) \ f \,, \ f \in \mathcal{D}(w(A))\,. \end{array}$$

This means that

$$\mathcal{D}(w(A)) = \{f \mid f \in \mathcal{H}, f \mid u(\lambda) \mid^{2} d(\mathbf{H}) f, f\} +$$

$$+ \int_{-\infty}^{+\infty} |v(\lambda)|^{2} d(\mathbf{H}) f, f\} < \infty \}.$$

Since $|u(\lambda)|^2 + |v(\lambda)|^2 = u^2(\lambda) + v^2(\lambda) = |w(\lambda)|^2$ we see that $\mathcal{D}(w(A)) = \mathcal{D}(|w|(A))$. Therefore $\mathcal{D}(w(A))$ is dense in $\mathcal{H}(A) = \int_{-\infty}^{+\infty} w(\lambda) dE(\lambda) f$, $f \in \mathcal{D}(w(A)) = \mathcal{D}(|w|(A))$.

<u>Proposition II.8.2:</u> <u>Let</u> w: $IR \to \mathbb{C}$ <u>be continuous</u>, <u>let</u> $u(\lambda) = Re \ w(\lambda)$, $v(\lambda) = Im(\lambda)$, $\lambda \in IR$. <u>Then</u>

b
$$+\infty$$

lim $\int w(\lambda)d(E(\lambda)f,g) =: \int w(\lambda)d(E(\lambda)f,g)$
 $a \to -\infty$, a $-\infty$

exists and

$$(w(A) f,g) = \int_{-\infty}^{+\infty} w(\lambda) d(E(\lambda) f,g), f \in \mathcal{D}(w(A)), g \in \mathcal{H},$$

$$\|w(A) f\|^{2} = \int_{-\infty}^{+\infty} |w(\lambda)|^{2} d(E(\lambda) f,f), f \in \mathcal{D}(w(A)).$$

$$\frac{\text{If } \lim_{B \to -\infty} \int_{A}^{b} w(\lambda) dE(\lambda) f \text{ exists then } f \in \mathcal{D}(w(A)), w(A) f = \lim_{B \to -\infty} \int_{B \to +\infty}^{b} w(\lambda) dE(\lambda) f = \int_{-\infty}^{+\infty} w(\lambda) dE(\lambda) f.$$
Proof:

 $-\infty < c < a < b < d < +\infty$. Then

b
$$|\int_{a}^{b} w(\lambda)d(E(\lambda)f,g) - \int_{c}^{d} w(\lambda)d(E(\lambda)f,g)|_{a}$$
a
$$|\int_{c}^{d} w(\lambda)d(E(\lambda)f,g)|_{a}^{d} + |\int_{c}^{d} w(\lambda)d(E(\lambda)f,g)|_{a}^{d}$$
b
$$|\int_{c}^{d} w(\lambda)d(E(\lambda)f,g)|_{a}^{d} + |\int_{c}^{d} w(\lambda)d(E(\lambda)f,g)|_{a}^{d}$$

Taking the Riemannian sums $\mathbf{T}_n\mathbf{f}$ as in the proof of Theorem II.2.1 we get

$$| (T_{n}f,g) |^{2} = | \sum_{i=1}^{k_{n}} w(\lambda_{i}^{(n)}) \cdot (E(\Delta_{i}^{(n)})f,E(\Delta_{i}^{(n)})g) |,$$

$$\leq ||g||^{2} \cdot |\sum_{i=1}^{k_{n}} |w(\lambda_{i}^{(n)})|^{2} \cdot (E(\Delta_{i}^{(n)})f,f) |,$$

$$|\int_{c} w(\lambda)d(E(\lambda)f,g)| \leq$$

$$\leq ||g||^{2} \cdot \int_{c}^{a} |w(\lambda)|^{2} d(E(\lambda)f,f),$$

if we concentrate on the integral $\int\limits_{C}^{a}w(\lambda)d(E(\lambda)f,g)$. The second one is treated analogously. This immediately infers the existence of

$$\int_{-\infty}^{+\infty} w(\lambda)d(E(\lambda)f,g) = \lim_{\substack{\Delta \to -\infty, \\ b \to +\infty}}^{} \int_{a}^{} w(\lambda)d(E(\lambda)f,g)$$

provided $f \in \mathcal{D}(w(A))$, $g \in \mathcal{H}$.

This gives

$$\int_{-\infty}^{+\infty} w(\lambda) d(E(\lambda)f,g) = \lim_{\lambda \to \infty}^{\infty} \int_{b \to \infty}^{\infty} w(\lambda) d(E(\lambda)f,g)$$

$$= (w(A)f,g),$$

 $f \in \mathcal{D}(w(A))$, $g \in \mathcal{H}$. Since

$$\|w(A)f\|^{2} = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} b \\ (\int w(\lambda)dE(\lambda)f, \int w(\lambda)dE(\lambda)f)$$

and since

$$\begin{split} & \underset{a}{\overset{b}{\parallel \int}} w(\lambda) dE(\lambda) f \|^2 = \underset{n \to \infty}{\lim} (T_n f, T_n f), \\ & = \underset{n \to \infty}{\lim} \sum_{i=1}^{k} |w(\lambda_i^{(n)})|^2 (E(\Delta_i^{(n)}) f, f), \\ & = \underset{a}{\overset{b}{\lim}} |w(\lambda)|^2 d(E(\lambda) f, f), f \in \mathcal{D}(w(A)), \end{split}$$

the last but one assertion of the present Proposition readily follows. Assume that

$$w(A) f = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} \int_{a}^{b} w(\lambda) dE(\lambda) f$$

exists. The preceding calculations show the last assertion.

Our next aim is derive rules for the addition and multiplication of operator valued functions. If $\mathbf{T_1,T_2}$ are any two operators in \mathcal{H} with domains of definition $\mathcal{D}(\mathbf{T_1})$, $\mathcal{D}(\mathbf{T_2})$ then we define

$$\begin{split} &(\mathtt{T}_1 + \mathtt{T}_2) \times = \ \mathtt{T}_1 \times + \mathtt{T}_2 \times , \ \times \in \mathcal{D}(\mathtt{T}_1 + \mathtt{T}_2) := \ \mathcal{D}(\mathtt{T}_1) \ \cap \mathcal{D}(\mathtt{T}_2) \ , \\ &(\mathtt{T}_1 \mathtt{T}_2) \times = \ \mathtt{T}_1(\mathtt{T}_2 \times) \ , \ \times \in \mathcal{D}(\mathtt{T}_1 \mathtt{T}_2) := \ \{ \mathtt{y} \, | \, \mathtt{y} \in \mathcal{D}(\mathtt{T}_2) \ , \mathtt{T}_2 \mathtt{y} \in \mathcal{D}(\mathtt{T}_1) \, \} \, . \end{split}$$

Now the following theorem holds:

Theorem II.8.2: Let A be selfadjoint in H with domain of definition $\mathcal{D}(A)$. Let $w_i: \mathbb{R} \to \mathbb{C}$ be continuous functions, i = 1, 2. Then

$$(w_1 + w_2) (A) \supseteq w_1 (A) + w_2 (A),$$

 $(w_1 w_2) (A) \supseteq w_1 (A) w_2 (A).$

More precisely, $w_1(A)w_2(A)$ is the restriction of $(w_1w_2)(A)$ to $\mathcal{D}(w_2(A)) \cap \mathcal{D}((w_1w_2)(A))$. We have

$$(w_1 w_2) (A) = w_1 (A) w_2 (A)$$

if and only if $\mathcal{D}(w_2(A)) \supset \mathcal{D}((w_1w_2)(A))$. Moreover

$$\begin{array}{lll} \mathcal{D}\left(\mathbf{w}_{1}\left(\mathbf{A}\right)+\mathbf{w}_{2}\left(\mathbf{A}\right)\right) & = & \mathcal{D}\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\left(\mathbf{A}\right)\right) \cap \mathcal{D}\left(\mathbf{w}_{1}\left(\mathbf{A}\right)\right), \\ & = & \mathcal{D}\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\left(\mathbf{A}\right)\right) \cap \mathcal{D}\left(\mathbf{w}_{2}\left(\mathbf{A}\right)\right). \end{array}$$

We have

$$w_1(A) + w_2(A) = (w_1 + w_2)(A)$$

if and only if

$$\mathcal{D}((w_1+w_2)(A)) \subset \mathcal{D}(w_1(A)) \text{ or }$$

 $\mathcal{D}((w_1+w_2)(A)) \subset \mathcal{D}(w_2(A)).$

<u>Proof:</u> If $f \in \mathcal{D}(w_1(A)) \cap \mathcal{D}(w_2(A))$ then by Proposition II.8.2

$$(w_{1}(A) + w_{2}(A)) f = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} \int_{a}^{b} (w_{1}(\lambda) + w_{2}(\lambda)) dE(\lambda) f$$

$$= \int_{-\infty}^{+\infty} (w_{1}(\lambda) + w_{2}(\lambda)) dE(\lambda) f = (w_{1} + w_{2})(A) f$$

Thus the first assertion is proved. If

$$\int_{-\infty}^{+\infty} |w_{1}(\lambda) + w_{2}(\lambda)|^{2} d(E(\lambda)f,f) < +\infty,$$
(II.8.3)
$$\int_{-\infty}^{+\infty} |w_{1}(\lambda)|^{2} d(E(\lambda)f,f) < \infty,$$

then $\int_{-\infty}^{+\infty} (|w_1(\lambda)|^2 + |w_2(\lambda)|^2) d(E(\lambda)f,f) < \infty$. The same conclusion holds if (II.8.3) is replaced by $\int_{-\infty}^{+\infty} |w_2(\lambda)|^2 d(E(\lambda)f,f) < \infty$. Thus

$$\mathcal{D}\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\left(\mathbf{A}\right)\right)\,\cap\mathcal{D}\left(\mathbf{w}_{\mathbf{i}}\left(\mathbf{A}\right)\right)\,\subset\,\mathcal{D}\left(\mathbf{w}_{1}\left(\mathbf{A}\right)+\mathbf{w}_{2}\left(\mathbf{A}\right)\right),$$

i = 1,2. The inclusion the other way round is also trivial. The last assertion is trivial. Let now be $f \in \mathcal{D}(w_2(A))$. As in the proof of Theorem II.6.2 one shows that $E(\lambda)w_2(A)f = w_2(A)E(\lambda)f$; in particular we have $E(\lambda)\mathcal{D}(w_2(A)) \subset \mathcal{D}(w_2(A))$. Thus

$$\|E(\lambda)w_{2}(A)f\|^{2} = \|w_{2}(A)E(\lambda)f\|^{2}$$

$$= \int_{-\infty}^{+\infty} |w_{2}(\mu)|^{2}d(E(\lambda)E(\mu)E(\lambda)f,E(\lambda)f)$$

where the last equation is an immediate consequence of the calculations in the end of the proof of Proposition II.8.2. Since $E(\lambda)E(\mu)f=E(\lambda)f$, $\lambda \leq \mu$, $E(\mu)f$, $\lambda > \mu$, we end with

$$\|E(\lambda)w_2(A)f\|^2 = \int_{-\infty}^{\lambda} |w_2(\mu)|^2 d(E(\mu)f,f).$$

If $w_2(A) f \in \mathcal{D}(w_1(A))$ then

$$+\infty > \int_{-\infty}^{+\infty} |w_{1}(\lambda)|^{2} d(E(\lambda)w_{2}(A)f,w_{2}(A)f)$$

$$= \int_{-\infty}^{+\infty} |w_{1}(\lambda)|^{2} d|E(\lambda)w_{2}(A)f|^{2}$$

$$= \int_{-\infty}^{+\infty} |w_{1}(\lambda)|^{2} dG(\lambda)$$

with $G(\lambda) = \|E(\lambda)w_2(A)f\|^2 = \int_{-\infty}^{\lambda} |w_2(\mu)|^2 d(E(\mu)f,f)$. Next we show that

$$\int_{a}^{b} |w_{1}(\lambda)|^{2} dG(\lambda) = \int_{a}^{b} |w_{1}(\lambda)w_{2}(\lambda)|^{2} d(E(\lambda)f,f).$$

The proof is similar to that of Proposition II.5.1. We have $(a = \lambda_1 < \lambda_2 < \dots < \lambda_{n+1} = b)$

$$\begin{split} & \left| \sum_{j=1}^{n} |w_{1}(\lambda_{j})|^{2} (G(\lambda_{j+1}) - G(\lambda_{j})) \right| \\ & = \sum_{j=1}^{n} |w_{1}(\lambda_{j})|^{2} \int_{\lambda_{j}}^{\lambda_{j+1}} |w_{2}(\mu)|^{2} d(E(\mu)f,f) \\ & = \sum_{j=1}^{n} |w_{1}(\lambda_{j})|^{2} |w_{2}(\lambda_{j})|^{2} \cdot ((E(\lambda_{j+1}) - E(\lambda_{j}))f,f) + \\ & + \sum_{j=1}^{n} |w_{1}(\lambda_{j})|^{2} \int_{\lambda_{j}}^{\lambda_{j+1}} (|w_{2}(\mu)|^{2} - |w_{2}(\lambda_{j})|^{2}) \cdot d(E(\mu)f,f). \end{split}$$

If $\max_{1\leq j\leq n} |\lambda_{j+1}^{-\lambda_{j}}|$ is sufficiently small the last sum can be made arbitrarily small, whereas the first sum converges to

b
$$\int_{a}^{b} |w_{1}(\lambda)w_{2}(\lambda)|^{2} d(E(\lambda)f,f).$$

Letting a tend to $-\infty$, b to $+\infty$, we see that $\mathcal{D}(w_1(A)w_2(A)) \subset \mathcal{D}((w_1w_2)(A))$. If on the other hand $f \in \mathcal{D}(w_2(A)) \cap \mathcal{D}((w_1w_2)(A))$ then the preceding calculations show that $w_2(A) f \in \mathcal{D}(w_1(A))$. Consequently

Therefore the equality sign holds. It is also clear now that $\mathcal{D}(w_1w_2(A)) = \mathcal{D}(w_1(A)w_2(A))$ if and only if $\mathcal{D}(w_2(A)) \supset \mathcal{D}((w_1w_2)(A))$. The reader may verify by himself that

$$E(\lambda) w_{2}(A) f = \int_{-\infty}^{\lambda} w_{2}(\mu) dE(\mu) f,$$

$$b \int_{A}^{b} w_{1}(\lambda) dE(\lambda) w_{2}(A) f = \int_{A}^{b} w_{1}(\lambda) w_{2}(\lambda) dE(\lambda) f,$$

$$f \in \mathcal{D}(w_{2}(A)),$$

and consequently

$$(w_1 w_2) (A) f = w_1 (A) w_2 (A) f,$$

 $f \in \mathcal{D}(w_1(A)w_2(A))$. Our Theorem is proved.

We draw some consequences of Theorem II.8.2. Let $n \in \mathbb{N}$. Set $w_2(\lambda) = w_1^n(\lambda)$. If $f \in \mathcal{D}((w_1w_2)(A)) = \mathcal{D}(w_1^{n+1}(A))$ then

$$\int_{-\infty}^{+\infty} |w_1(\lambda)|^{2(n+1)} d(E(\lambda)f,f) < +\infty.$$

Taking a Riemannian sum we obtain by applying Hölder's inequality

$$\sum_{i=1}^{m} |w_{1}(\lambda_{j})|^{2n} (E(\Delta_{j}^{(m)})f,f)$$

$$\leq (\sum_{i=1}^{m} (E(\Delta_{j}^{(m)})f,f))^{\frac{2}{2(n+1)}}.$$

$$\cdot (\sum_{i=1}^{m} |w_{1}(\lambda_{j})|^{2(n+1)} (E(\Delta_{j}^{(m)})f,f))^{\frac{2n}{2(n+1)}},$$

$$-\infty < a = \lambda_{1} < \lambda_{2} < \cdots < \lambda_{m+1} = b < +\infty, \ \Delta_{j}^{(m)} = [\lambda_{j},\lambda_{j+1}]. \ \text{This gives}$$

$$\sum_{i=1}^{b} |w_{1}(\lambda_{i})|^{2n} d(E(\lambda_{i})f,f) \leq ||f||^{\frac{2}{n+1}}. ||f||^{\frac{2}{n+1}}.$$

$$d(E(\lambda_{i})f,f))^{\frac{2n}{2(n+1)}}.$$

By letting a tend to $-\infty$ and b to $+\infty$ we see that $f \in \mathcal{D}(w_2(A))$. Application of Theorem II.8.2 infers $w_1^{n+1}(A) = w_1(A)w_1^n(A)$; more generally it is implied by this that

$$(II.8.4) w^{n}(A) = (w(A))^{n}.$$

This relation also holds for negative integer exponents. It is sufficient to show this for n=-1. We assume that

$$w(\lambda) \neq 0, \lambda \in \mathbb{R}$$
.

Then $w^{-1}(\lambda)w(\lambda)=1$, $\lambda\in\mathbb{R}$, and $w^{-1}(A)w(A)$ is the restriction of the identity to $\mathcal{D}(w(A))$; $w(A)w^{-1}(A)$ is the restriction of the identity to $\mathcal{D}(w^{-1}(A))$. This precisely means that w(A) has an inverse, and

$$(II.8.5) (w(A))^{-1} = w^{-1}(A).$$

The following is evident: If w is bounded, say $|w(\lambda)| \le M$, $\lambda \in \mathbb{R}$, then

$$(II.8.6)$$
 $w(A) \in L(H,H),$ $||w(A)|| \leq M.$

Now we study the adjoint of w(A). Our result is

Theorem II.8.3: Let $w: \mathbb{R} \to \mathbb{C}$ be continuous. Then

(II.8.7)
$$(w(A))^* = \overline{w}(A), w(A) = (\overline{w}(A))^*.$$

In particular w(A) is closed. Here $\overline{w}(A)$ denotes the operator corresponding to the function \overline{w} defined by $\overline{w}(\lambda) = w(\lambda)$, $\lambda \in \mathbb{R}$.

Proof: We set

$$w(\lambda) = r(\lambda)\widetilde{w}(\lambda), \lambda \in \mathbb{R},$$

with $r(\lambda) = |w(\lambda)| + 1$ and $|\widetilde{w}(\lambda)| = 1$. Then

$$\mathcal{D}(w(A)) = \mathcal{D}(r(A)),$$

$$w(A) = r(A)\widetilde{w}(A) = (r\widetilde{w})(A) = (\widetilde{w}r)(A) = \widetilde{w}(A)r(A)$$

by Theorem II.8.2. r(A) is selfadjoint in H with domain of definition $\mathcal{D}(w(A))$. $\widetilde{w}(A)$ is in L(H,H) by (II.8.6). It is easy to see that

$$(\widetilde{w}(A)) * = \widetilde{\widetilde{w}}(A)$$

if we write

$$\widetilde{w}(A) = (Re \widetilde{w})(A) + i(Im \widetilde{w})(A)$$
,

where (Re \widetilde{w})(A), (Im \widetilde{w})(A) are bounded selfadjoint operators in H with domain of definition H. We have

$$(w(A))^* \subseteq r(A)\tilde{w}(A) \subseteq \overline{w}(A)$$
.

Again by Theorem II.8.2 we conclude $\overline{w}(A) = r(A) \tilde{w}(A)$. Let $f \in \mathcal{D}(\overline{w}(A))$, $g \in \mathcal{D}(w(A))$. Then it follows

$$(\widetilde{w}(A)r(A)g,f) = (g,r(A \widetilde{\widetilde{w}}(A)f),$$

 $\widetilde{w}(A) \subseteq (w(A))^*.$

We employ Theorem $\overline{1}$.8.3. Since by (II.8.7) it follows that $(w(A))^* = w(A)$ we obtain the closedness of w(A) with the aid of Theorem I.1.2.

Now we deal with a case which occurs frequently in the applications; namely we assume that A is bounded from below.

Theorem II.8.4: Let A be a selfadjoint operator in \mathcal{H} with domain of definition $\mathcal{D}(A)$. Let

$$(Au, u) \ge \gamma \|u\|^2, u \in \mathcal{D}(A),$$

for some $\gamma \in \mathbb{R}$. Let w: $\mathbb{R} \to \mathbb{C}$ be any continuous function. Then

$$w(A) f = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} \int_{a}^{b} w(\lambda) dE(\lambda) f,$$

$$= \int_{-\infty}^{+\infty} w(\lambda) dE(\lambda) f,$$

$$w(A) f-w(\gamma) E(\gamma) f = \lim_{b \to +\infty} \int_{\gamma} w(\lambda) dE(\lambda) f,$$

$$b \to +\infty \gamma$$

$$=: \int_{\gamma} w(\lambda) dE(\lambda) f, f \in \mathcal{D}(w(A)).$$

In particular, if $w: [\gamma, +\infty) \to \mathbb{C}$ is any continuous function which is continued anyhow to a continuous function $w: \mathbb{R} \to \mathbb{C}$, then

$$\hat{\mathbf{w}}(\mathbf{A})\mathbf{f} = \int_{-\infty}^{+\infty} \hat{\mathbf{w}}(\lambda) d\mathbf{E}(\lambda) \mathbf{f},$$

$$= \int_{\gamma}^{+\infty} \mathbf{w}(\lambda) d\mathbf{E}(\lambda) \mathbf{f} + \mathbf{w}(\gamma) \mathbf{E}(\gamma) \mathbf{f},$$

$$= : \mathbf{w}(\mathbf{A}) \mathbf{f},$$

$$f \in \mathcal{D}(\hat{w}(A)) = \{f | f \in \mathcal{H}, \int_{-\infty}^{+\infty} |\hat{w}(\lambda)|^2 d(E(\lambda)f, f) < +\infty\} =$$

 $= \{f \mid f \in \mathcal{H}, f \mid w(\lambda) \mid^{2} d(E(\lambda)f, f) < +\infty \}. \text{ The latter space is de-} \\ \gamma = 0 \\ \text{noted by } \mathcal{D}(w(A)). \text{ The value of } f \quad |w(\lambda)|^{2} d(E(\lambda)f, f) = \\ \gamma = 0 \\ \text{ in the latter space is de-} \\ \gamma = 0 \\ \text{ in the latter space is de-} \\ \text{ in the latter$

 $\frac{1}{\gamma-0} = \lim_{\epsilon \to 0, \quad \gamma-\epsilon} \int_{|w(\lambda)|}^{|w(\lambda)|} d(E(\lambda)f,f) = \lim_{\epsilon \to 0, \quad \gamma-\epsilon} |w(\lambda)|^2 d(E(\lambda)f,f) \text{ does not depend on the continua-}$

tion \hat{w} of w and is precisely $|w(\gamma)|^2 ||E(\gamma)f||^2 + \frac{1}{2} ||w(\lambda)||^2 d(E(\lambda)f,f)$. In particular

$$\|w(A)f\|^2 = \int_{\gamma-O}^{+\infty} |w(\lambda)|^2 d(E(\lambda)f,f),$$

$$\mathcal{D}(w(A)) = \{f | f \in \mathcal{H}, f | w(\lambda) |^2 d(E(\lambda)f, f) < +\infty \}.$$

<u>Proof:</u> If $\delta \in \mathbb{R}$, $\delta < \gamma$, then

$$((A-\delta)u,u) \ge (\gamma-\delta)||u||^2, u \in \mathcal{D}(A).$$

Since $\gamma - \delta > 0$ we get

$$\| (A-\delta)u \| \ge (\gamma-\delta) \| u \|$$
, $u \in \mathcal{D}(A)$.

Theorem II.1.2 shows that $\delta \in \Sigma(A)$. By Proposition II.7.2 the operators $E(\lambda)$ are constant for $\lambda < \gamma$, i.e. $E(\lambda) = 0$, $\lambda < \gamma$. Let $-\infty < a < \gamma < b < +\infty$. Consider a partition $a = \lambda_1 < \lambda_2 < \dots < \lambda_i = \gamma < \lambda_{i+1} < \dots < \lambda_{n+1} = b$. Then

$$\sum_{j=1}^{n} w(\lambda_{j}) E(\Delta_{j}^{(n)}) f = w(\lambda_{i-1}) E(\gamma) f + \sum_{j=1}^{n} w(\lambda_{j}) E(\Delta_{j}^{(n)}) f,$$

$$\Delta_{j}^{(n)} = [\lambda_{j}, \lambda_{j+1}].$$

Letting $\max_{1 \le j \le n} |\lambda_{j+1} - \lambda_j|$ tend to 0 we get $\int_a^b w(\lambda) dE(\lambda) f = a$ b $\int_b^b w(\lambda) dE(\lambda) f + w(\gamma) E(\gamma) f$. Now the first and the second assertion γ of the present theorem easily follow. As for the third one we get (with the same notations as before)

$$\sum_{j=1}^{n} |w(\lambda_{j})|^{2} (E(\Delta_{j}^{(n)}) f, f) =
= |w(\lambda_{i-1})|^{2} \cdot (E(Y) f, f) + \sum_{j=i}^{n} |w(\lambda_{j})|^{2} \cdot (E(\Delta_{j}^{(n)}) f, f).$$

As before we obtain

$$\int_{a}^{b} |\hat{w}(\lambda)|^{2} d(E(\lambda)f,f) = |w(\gamma)|^{2} ||E(\gamma)f||^{2} + \int_{\gamma}^{b} |w(\lambda)|^{2} d(E(\lambda)f,f).$$

Since
$$\int_{\gamma-\epsilon}^{b} |\hat{\mathbf{w}}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) = \int_{\gamma}^{b} |\mathbf{w}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) +$$

+
$$\int_{\gamma-\epsilon}^{\gamma} (|\hat{\mathbf{w}}(\lambda)|^2 - |\mathbf{w}(\gamma)|^2) d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) + |\mathbf{w}(\gamma)|^2 ||\mathbf{E}(\gamma)\mathbf{f}||^2$$
, $\epsilon > 0$, we arrive at

$$\int_{-\infty}^{+\infty} |\hat{\mathbf{w}}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) = \int_{\gamma-\mathbf{O}}^{+\infty} |\mathbf{w}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}),$$

and this relation holds in the following sense: If the left hand side is finite then the right hand side; moreover its value is

$$\int_{\gamma}^{+\infty} |w(\lambda)|^2 d(E(\lambda)f,f) + |w(\gamma)|^2 ||E(\gamma)f||^2$$

and thus does not depend on the continuation w under consideration. If the right hand side is finite, i.e. if

$$\lim_{\substack{\xi \to 0, \ \gamma - \varepsilon \\ 0 \to +\infty}} \int_{|\hat{\mathbf{w}}(\lambda)|}^{2} d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f})$$

exists for some continuous continuation w of w then it exists for any, and its value is precisely

$$\int_{-\infty}^{+\infty} |\hat{\mathbf{w}}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) = \int_{\gamma}^{+\infty} |\hat{\mathbf{w}}(\lambda)|^2 d(\mathbf{E}(\lambda)\mathbf{f},\mathbf{f}) + |\mathbf{w}(\gamma)|^2 ||\mathbf{E}(\lambda)\mathbf{f}||^2.$$

Our theorem is proved.

If $\gamma \ge 0$ we can thus define

$$A^{\alpha}f = \int_{0}^{\infty} \lambda^{\alpha} dE(\lambda)f, Re^{\alpha} > 0$$

$$f \in \mathcal{D}(A^{\alpha}) = \{f | f \in \int_{0}^{\infty} |\lambda|^{2 \operatorname{Re}^{\alpha}} d(E(\lambda)f, f) < \infty\}$$

(observe that w(0) =0 if w(λ) = λ^{α} , $\lambda \ge 0$). Applying Hölder's inequality to Riemannian sums as we did right after the proof of Theorem II.8.2 we get

$$\mathcal{D}(A^{\alpha}) \supseteq \mathcal{D}(A^{\beta})$$
 if Re $\beta \ge Re \alpha > 0$.

Theorem II.8.2 then furnishes

$$A^{\alpha}A^{\beta}f = A^{\alpha+\beta}f$$
, $f \in \mathcal{D}(A^{\alpha+\beta})$, Re α , Re $\beta > 0$.

If $\gamma > 0$ we can go further. Then

$$A^{\alpha} f = \int_{\gamma}^{+\infty} \lambda^{\alpha} dE(\lambda) f, \text{ Re } \alpha \ge 0, \text{ } f \in \mathcal{D}(A^{\alpha}),$$

for any γ' with $0<\gamma'<\gamma.$ Correspondingly $\mathcal{D}\left(A^{^{\alpha}}\right)$ is precisely the set of those f $\in\mathcal{H}$ for which

$$\int_{\gamma}^{+\infty} |\lambda|^2 \operatorname{Re}^{\alpha} d(E(\lambda)f,f) < +\infty.$$

From what was written before it is clear that the values of the preceding integrals do not depend on γ^{\bullet} . A admits a bounded inverse

$$A^{-\alpha}f = \int_{\gamma'}^{+\infty} \lambda^{-\alpha} dE(\lambda)f, f \in H,$$

and it holds

$$A^{\alpha}A^{\beta}f = A^{\alpha+\beta}f$$
, $f \in \mathcal{D}(A^{\gamma})$,
 $\gamma = \max(\text{Re } \alpha, \text{ Re } \beta, \text{ Re}(\alpha+\beta))$.

Next we want to compare the fractional powers of any two selfadjoint operators which are bounded from below with some $\gamma > 0$ and have identical domain of definition. This result is due to E. Heinz [H]; we prefer to give a more general version (in view of our applications to the Navier-Stokes equations); this is due to Kato [K].

Definition II.8.1: Let A be a selfadjoint operator in a Hilbert space \mathcal{H} with domain of definition $\mathcal{D}(A)$. Let A be bounded from below with $(Au,u) \ge \gamma \|u\|^2$, $u \in \mathcal{D}(A)$, for some $\gamma > 0$. Then A is called strictly positive (or $\ge \gamma > 0$). If (Au,u) > 0, $u \in \mathcal{D}(A)$, $u \neq 0$, then A is called positive (>0). If $(Au,u) \ge 0$, then A is called nonnegative (or A ≥ 0).

Theorem II.8.5: Let H_1 , H_2 be two Hilbert spaces and let A and B be selfadjoint nonnegative operators in H_1 and H_2 respectively with domains of definition $\mathcal{D}(A)$ and $\mathcal{D}(B)$. Let T be a bounded operator from H_1 into H_2 which maps $\mathcal{D}(A)$ into $\mathcal{D}(B)$. Assume that there exists a number M such that

 $\|BTu\| \le M\|Au\|$, $u \in \mathcal{D}(A)$.

Then, for each α satisfying $0 < \alpha < 1$, the image of $\mathcal{D}(A^{\alpha})$ under T is included in $\mathcal{D}(B^{\alpha})$ and, if $B \ge \gamma_2 > 0$, $A \ge \gamma_1 > 0$,

$$\|B^{\alpha}Tu\| \leq M^{\alpha}\|T\|^{1-\alpha}\|A^{\alpha}u\|, u \in \mathcal{D}(A^{\alpha});$$

otherwise

$$\|B^{\alpha}Tu\| \leq (M+\|T\|)^{\alpha}\|T\|^{1-\alpha}\|A^{\alpha}u\|,$$

$$u \in \mathcal{D}(A^{\alpha}).$$

<u>Proof:</u> First we assume that A,B are strictly positive. Let $u \in \mathcal{D}(A^{\alpha})$ and $v \in \mathcal{D}(B)$. The Hilbert space valued function $z \to A^Z u$, $u \in \mathcal{D}(A^{\alpha})$, is holomorphic in Re z <0 (i.e. complex differentiable with respect to the norm of \mathcal{H} , cf. 0.2), and continuous in Re $z \le \alpha$. $z \to B^{\alpha-Z} v$ is certainly holomorphic in $\alpha-1 < \text{Re } z < \alpha$ and continuous in $\alpha-1 \le \text{Re } z \le \alpha$. Hence the function f defined by

$$f(z) = (TA^{z}u, B^{\alpha - \overline{z}}v)$$

is holomorphic in $\alpha-1 < \text{Re } z < \alpha$ and continuous in $\alpha-1 \le \text{Re } z \le \alpha$. Now we estimate |f| on Re $z=\alpha-1$ and Re $z=\alpha$. Since $A^{\alpha-1+iy}u=A^{-1}A^{\alpha+iy}u\in\mathcal{D}(A)$ if $y\in IR$ we have $TA^{\alpha-1+iy}u\in\mathcal{D}(B)$ and

$$|f(\alpha-1+iy)| = |(TA^{\alpha-1+iy}u, B^{1+iy}v)|,$$

$$= |(BTA^{\alpha-1+iy}u, B^{iy}v)|,$$

$$\leq ||BTA^{\alpha-1+iy}u|| ||B^{iy}v||$$

$$\leq M||A^{\alpha+iy}u|| ||B^{iy}v|| \leq M||A^{\alpha}u|| ||v||$$

by our assumption, Theorem II.8.2 and (II.8.6). Similarly

$$|f(\alpha+iy)| = |(TA^{\alpha+iy}u, B^{iy}v)|,$$

 $\leq ||TA^{\alpha+iy}u|| ||B^{iy}v||,$
 $\leq ||T|| ||A^{\alpha}u|| ||v||.$

Hence, by the three-lines theorem in the theory of functions, we get

$$\begin{aligned} \left| \left(\operatorname{Tu}_{,B}^{\alpha} \mathbf{v} \right) \right| &= \left| \mathbf{f}(\mathbf{0}) \right|, \\ &\leq \left\{ \sup_{\mathbf{y} \in \operatorname{IR}} \left| \mathbf{f}(\alpha - 1 + i\mathbf{y}) \right| \right\}^{\alpha} \cdot \left\{ \sup_{\mathbf{y} \in \operatorname{IR}} \left| \mathbf{f}(\alpha + i\mathbf{y}) \right| \right\}^{1 - \alpha}, \\ &\leq M^{\alpha} \| \mathbf{T} \|^{1 - \alpha} \| \mathbf{A}^{\alpha} \mathbf{u} \| \| \mathbf{v} \|. \end{aligned}$$

Thus we have shown that $\operatorname{Tu} \in \mathcal{D}(\operatorname{B}^{\alpha})$ and, that the estimate in question holds. If A,B are merely nonnegative, then we consider $B+\epsilon \geq \epsilon > 0$, $A+\epsilon \geq \epsilon > 0$. We have

$$\| (B+\epsilon) T u \| \ge \| B T u \| - \epsilon \| T \| \| u \| ,$$

$$\| (B+\epsilon) T u \| \le \| B T u \| + \epsilon \| T \| \| u \| ,$$

$$\le M \| A u \| + \epsilon \| T \| \| u \| ,$$

$$\le M \| (A+\epsilon) u \| + \epsilon \| T \| \| u \| ,$$

$$\| (B+\epsilon) T u \| \le (M+\|T\|) \| (A+\epsilon) u \| ,$$

where we have used our assumption and the inequalities

$$\varepsilon \| \mathbf{u} \| \le \| (\mathbf{A} + \varepsilon) \mathbf{u} \|,$$
 $\| \mathbf{A} \mathbf{u} \| \le \| (\mathbf{A} + \varepsilon) \mathbf{u} \|.$

Consequently $T\mathcal{D}((A+\epsilon)^{\alpha}) \subset \mathcal{D}((B+\epsilon)^{\alpha})$,

$$\| (B+\epsilon)^{\alpha} T u \| \le (M+\|T\|)^{\alpha} \|T\|^{1-\alpha} \cdot \| (A+\epsilon)^{\alpha} u \|.$$

Since $\mathcal{D}((B+\epsilon)^{\alpha}) = \mathcal{D}(B^{\alpha})$, $\mathcal{D}((A+\epsilon)^{\alpha}) = \mathcal{D}(A^{\alpha})$ we can let ϵ tend to and arrive at the result desired in the cases $A \ge \gamma_1 > 0$, $B \ge \gamma_2 > 0$; A,B nonnegative but not strictly positive. It is clear that all possible cases are covered by the preceding calculations.

Corollary to Theorem II.8.5: Let A,b be nonnegative selfadjoint operators in a Hilbert space H with domains of definition $\mathcal{D}(A)$, $\mathcal{D}(B)$. Suppose $\mathcal{D}(A) \subset \mathcal{D}(B)$. For all $\alpha \in (0,1)$, we have $\mathcal{D}(A^{\alpha}) \subset \mathcal{D}(B^{\alpha})$. If in addition, there is a certain number M such that $\|Bu\| \leq M\|Au\|$, $u \in \mathcal{D}(A)$, then, if $B \geq \gamma_2 > 0$, $A \geq \gamma_1 > 0$,

 $\|B^{\alpha}u\| \leq M^{\alpha}\|A^{\alpha}u\|$, $u \in \mathcal{D}(A^{\alpha})$;

otherwise

 $\|B^{\alpha}u\| \leq (M+1)^{\alpha}\|A^{\alpha}u\|, u \in \mathcal{D}(A^{\alpha}).$

References

[H] Heinz, E.: Beiträge zur Störungstheorie der Spektralzerlegung. Math. Annalen 123, 415-438 (1951).

[K] <u>Kato., T.</u>: A generalization of the Heinz Inequality. Proc. Japan Acad. 6, 305-308 (1961).

[NJ Natauson, I.P.: Theorie der Funktionen einer reellen Veränderlichen. Verlag Harri Deutsch, Thun (1981).

[RN] <u>Riesz</u>, F. & Sz.-Nagy, B.: Vorlesungen über Funktionalanalysis Verlag der Wissenschaften. Ost-Bevlin (1956).