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Abstract

We study the question of global existence of Euler’s multiplier in
any dimension under certain geometrical conditions.

1. Introduction

First order differential equations of the form

(1) f(z,y)dz + g(z,y)dy = 0

sometimes can be solved by finding a so called integrating factor, i.e. some
function A(z,y) such that there exists a C''-function Q(z,y) with the property

dQ(x,y) = Az, y)f(z,y)dz + Mz, y)g(z,y)dy

with the consequence that equation (1) can also be written in the form

Q(z,y) = const,

which can also be considered as an implicit solution of (1).

It is well known that, if f(z,y) # 0 or g(z,y) # 0 there exists an open
neighbourhood U of (x, %) and nontrivial functions A € C%(U,R), Q € CY(U,R)
such that

dQ(z,y) = AMz,y)f(z,y)dz + Az,y)g(z,y)dy in U,

see e.g. [von Westenholz]. The question of zeros of A is treated in [Mafik].
In n dimensions the question of existence of the functions A and @ is more
complicated.
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Let U ¢ R*, A € ¢, R") be any vector field. Now we are looking for
nontrivial functions @ € C*{U,R), A € C°(U,R) such that

VeelU: VQ(z) = Axz)A(z),

where ) is then called Euler’s multiplier. It is easy to verify that, concerning
the corresponding Pfaffian form w = 37| A;dz;, the condition

(2) wAdw =10

is necessary for the existence of such functions. Conversely, if condition (2)
is satisfied and A(z) # 0, Frobenius theory guarantees the local existence of
A and @ in the sense of above, see [Gerlich],[Grauert] and [Holmann]. But in
general, this does not imply the global existence of A and @, even if A(x) # 0
and (2) are globally fulfilled.

In this article we apply the local result and present two geometrical conditions
which are sufficient for the global existence of A and () considering the so called
integral surfaces. These are surfaces whose tangential spaces are pointwise the
orthogonal complement of the field vector A(x). The geometrical conditions
are the following:

(i) In the first case we assume that A has an isolated critical point in 0 and
in some neighbourhood of 0 all integral surfaces are closed, more precisely,
each integral surface I' is the boundary of some domain G with 0 € G. This
situation is related to a problem of Poincaré who maintains the existence of
@ and A in the class of analytic functions around 0, which, in general, is not
true (see [Frommer, §2a)}).

(ii) In the second case we suppose that one component of the vector field A is
bounded from below. In more than two dimensions additionally we first assume
U to be an infintite cylinder and the component A,, along the cylinder axis
to be bounded from below. In a second step this can be carried over to the
more general case of a tube which is C?-diffeomorphic to the infinite cylinder.
Under this condition we can show the global existence of integral surfaces in
the sense above which then leads us to a globalization of @@ and A.

In both cases the condition (2) implies then the global existence of A and Q.
The two dimensional cases are considered particularly, because there the proofs
are much easier.

Concerning the physical application of this result, we note that the global
existence of Euler’s multiplier for a given vector field A means that this field
is everywhere parallel to the gradient of some function, i.e. the field line image
of A then is the same as of some potential field. This may be useful in some
questions of mathematical physics.
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2. The 2-dimensional case

Existence of Euler’s multiplier in the case of closed inte-
gral curves surrounding a critical point

2.1. Assumptions: Let U C R? be an open set, 0 € U and A = (a1, a2) €
C'(U,R?) with the properties:

A(0) =0, VzecU\{0}: A(z) #0.

In addition to this we suppose all integral curves to be closed, i.e. all solutions
r = (z1,%2) of the differential equation system

(t) = ag(x(t))
B 400 = —alet))

to be periodic in t. Without restriction we may assume OU to be an integral
curve and all solutions of (3) to have winding number 1 with respect to 0.

2.2. Notations: In what follows let z(.) denote a solution of equation (3),
where = means % or (%, respectively. On the other hand, any solution of the

field line equation
4 X(s) = A(X(s))

will be denoted by X(.), where ' means differentiation with respect to param-
eter s. Let (.,.) denote the Euklidian scalar product in R?.

Obviously we have (z(t), X'(s)) = 0 wherever z(t) = X(s).

2.3.Lemma: Under the assumptions 2.1. every field line cuts every integral
curve in exactly one point.

PROOF: (a) According to Jordan’s theorem the plane R? is decomposed uniquely
into an interior and an exterior domain by each closed integral curve. The outer
normal is given by —l—ﬁ—i. As every field line penetrating an integral curve has
the orientation of the inner normal, a field line can never leave such an interior
domain.

(b) Now let X : ]og, +oo[ — U \ {0} be any ficld line of A. We are going to
show that lim,_,., X(s) = 0.

We assume the existence of a closed intergral curve z : {0,7[ — U\ {0},

I; .= z([0,T7), with
(5) trace XNT,; =% but lim dist(X(s),I}) = 0.

3—00

Let G; be the interior of I'; and I, an integral line with interior domain Gy,
G; C Gy, where dist(I';,I'y) is assumed to be sufficiently small. Then for an
appropriate small 7 > 0 the mapping

B:[0,T[ x ]—n,4+n = U, (t,0) — z(t) + QA(:::(t))
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is a unique parametrization of a neighbourhood of I';, such that
S =G\ G
is a subset of 8([0, T[x[—n,0]). Moreover there exist some ¢ > 0 satisfying
(6) VreS: |Alz)| > ¢
and some ¢ € |og, +0o| such that
Vs> o: X(s) €S.
Now let t(s), o(s) be the coordinates of X(s) with respect to 8. Then we have
(1) d(s)<0
and

X'(s) = (B(t, 0))'(s) =
= & (t(s))t'(s) + o(s) DA(z(¢(s))) £(4())t'(s) + &'(s)A(z(t(5))).

Because of eq. (5) and (6) we have

(8)

(9) o(s) —» 0, s = +c0
and therefore
o(s) DA(2(t(s))) £(t(s))t' (s) — 0, s +o0.
From eq. (8) we conclude
d(s){(A(z(t(s)), A(X(s))) — (X'(5), A(X(s))) = 0, s = +oo0,

and thus, applying eq. (5),

im ¢'(s) = lim iA(X(S))IE z
Jgell = I (A(z(t(s))), A(X(5))) b
which contradicts (7) and (9). 0

An immediate consequence of this is the following lemma.

2.4.Lemma: Let the assumptions in 2.1. be salisfied. Let X : ]og, +oo] = U
be any field line of A, where X(09—0) € 0U. Let z(., s) be the unique solution of
the initial value problem (3), z(0,s) = X(8) for s € |og, +oo| with periodicity
length T'(s) > 0. Then the mapping

z(.,.}: [0, T(s)] % Jag, oo — U\ {0}, (t,s) > z(t,s)

is bijective. Moreover, x(.,.) is periodically extendable with respect to s to some
function z(.,.) € C'([og, +oo[xR,U).
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ProoF: The regularity result follows from the theory of ordinary differential
equations. O
Now we can prove the first main result of this paragraph.

2.5. Theorem: Let the assumptions of 2.1. be satisfied. Then there exist Q) €
C'(U,R) and X € C°(U,R) with the properties

VQ(z) = AMz)A(z) inU, Mz)#£0 inU\{0}, A(0)=0.

Proor: (a) First we show that the perodicity length T'(s) is continuously
differentiable with respect to parameter s.
T(s) is the smallest value ¢ > 0 with the property

(10) z(t,8) = z(0,5) = X(s).

Because of @(t,s) # 0 in a sufficiently small neighbourhood of ¢ = T'(s) there
exists exactly one ¢t with this property, where s is fixed. Now let 55 € ]og, +00],
to = T(sop). Since A(z) # 0 where z # 0, we may assume without restriction

i1 (o, 0) = az{z(to, 0)) # 0.

For (t,s) in some neighbourhood of (tg, s9) we define
®(t,s) = zi(t,5) — 2.(0, 5).

Then @ is continuously partially differentiable satisfying
D(to, 50) =0, 0:P(to, 50) = £1(to, 50} # 0.

The implicit function theorem yields the existence of 6;,do > 0 and some
function 7 € C! ( 80— 82, S0+ d2[ , Jto 61, t0+61[) which fulfills the condition

V(t,S) € ]to—(51,t0+(51[)<]80—(52,30+52[ : @(t,S) :O@t:T(S).

As t = 7(s) is uniquely determined, in a small neighbourhood eq. (10) is
equivalent to ®(¢,s) = 0. Thus, for s near s; we have T(s) = 7(s) and T(.) is
continuously differentiable.

(b) Now we modify our parametrization of U \ {0} by scaling the periodicity
length of = to 1. For (¢, s) € Rx]og, +oo[ let us define

#(t,s) = z(T(s)t, s).

Thus Z(., s} is the unique solution of the initial value problem

(11) #(t,s) = T(s) ( ‘“fi’f’afs;)) 2(0,8) = £(1, 8) = X(s)
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and
i: [0,1[x]os, +oo[ = U\ {0}, (t,8) = E(,s)

is a Cl-mapping with a periodic C'-extension to Rx]og,+0o[. Because of
Lemma 2.4. s is uniquely determined by = or Z, respectively, so we may define

A(z(t, s)) = T(s) (_a;f?&’tfl;)) ‘

Since ¥ is continuously differentiable, we know from the theory of ordinary dif-
ferential equations that z(., s) and Z'(., s) are solutions of the linear differential
equation

w(t,s) = DA(E(, s))wlt,s)

and therefore we have

I ~f_.'., ~f _ f‘[‘:}_ 5:’1 _
(z18)—Zo8]) (8,8) = det [~ 1) (ts) =
Xz Xq
t

= det (:?1 3:3:1) (0,3)-exp(/ trace DA (Z(r, s))dr) # 0

.’.Ug 392
0

since (0, s) = £(0,s) T'(s) + z'(0, 5) and 2/(0, s} = X'(s) = A(X(s)). Thus
also the corresponding inverse mapping

(12) 7" UN{0} — [0,1[ x Joo, +oo]

is continuously differentiable.
(c) In order to construct the desired function @ we choose any smooth function
K : ]oo, +oo[ — R with the following properties

Vs € |og, +oof : K'(s) >0, E+m k(s)=ceR
13 ’ T\,
( ) 1-1m K (S)T(S) o 0’ lim _ K (S)xj (ti S) — O, ‘7 - 1’ 2,

s—+co (ﬁlff;‘fz i _f;2£i)(t’ 5) s—+o0 (flj"z — igj'l)(t, S)

where the limites are supposed to be uniform with respect to ¢ € R. According
to (12) we can define

Q: U\ {0} =R, Q((,s)) = «(s).

Therefore Q(Z(.,.)) is continuously partially differentiable and 1-periodic with
respect to ¢, and thus @ € C'(U'\ {0}, R). The chain rule yields

Rl = éi%(fé(t,s))f:ﬁ(t, 3) + gm%(i:(t, s))y(t, s),
O6ls) _0Q . e L 02
(= e B—:Q(j(t’ s))z1(t, ) + a—x?(x(t, s))Z2(t, ),
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and thus
%0 i = —a(t,5) -k'(s
(14) 6351( e (£,2) — £,2) (2, ) (@),
oQ , . 1 (t, 5) ,
52,00 = GE _wEyge

fort € R, s € ]og, +oo[. The assumptions (13) yield lim,_,oc VQ(Z(¢,5)) =0
uniformely with respect to ¢ € R, thus

il_l}l(l)VQ(:C) = 0, and il_r’r(l)Q(a:) = 6

@ therefore has a Cl-extension to U with Q(0) = ¢, VQ(0) = 0. Using this
and (14) we obtain

- k' (8)T(s) -
VQRIE(t,8)) = —= : - Alz(t, 5)).
Q) = Gopryay AEH)
Now define A : U — R by
AME(t s)) = RST)  Lg, a0)=0.

(%8 - 3182) (8, 5)
Because of eq. (13) A is continuous and we arrive at

Ve U: VQ(z) = A(z)A(z). O

The existence of Euler’s multiplier in the case of one
component which is bounded from below

Now we consider the case that one component of the vector field A is bounded
from below. For our convenience we will change our notation and write (z,y)
instead of (z1,2) and (f, g) instead of (a1, a2).

2.6. Assumptions: Let G C R? be any domain, f,g € C'{G,R). We consider
the Pfaffian form

w(z,y) = f(z,y)dz + g(z,y)dy.
The condition w A dw = 0 is in two dimensions always satisfied.
2.7.Theorem: Lete > 0, let G be an open subset of G with the property
Y(z,y) € G, : g(z,y) > e
Then there ezist A. € C°(G;,R), Q. € CYG,,R) satisfying

e (43123) -em (23] #o
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PROOF: (a) We consider the restrictions |z, glg; € C'(G: R) and construct
extensions f, g € CL .(R?,R) with the property

(15) V(z,y) €R*: §l=z,y) 2

b M

In particular, f, § are globally bounded and uniformely Lipschitz-continuous.

(Note that flg, = fle., Gla. = gla,, but in general flov. # flove.. Glere. #
gle\a..) Those conditions guarantee the global existence of all solutions of

i(t) =

7
U8 vty = — Fa)w0t).

Because of (15) for every solution of (16) the function z(.) is strictly montoni-
cally increasing in R, where 0 < ¢; < #(.) < ¢ for some constants ¢;,¢; € R,
Therefore z(.) : R — R, t — z(¢) is bijective and the inverse mapping z7'(.)
is differentiable.

Thus we can write y(z) := y(t), where £ = z(¢). Obviously the trace of the
soulution of the initial value problem (16), (0) = zg, ¥(0) = yo is equal to the
graph of the solution of the initial value problem

17) y'(z) = —=(z,3(), ylzo) =,

=) |k'h|

where y' means 2. For (2o, yo) € R? the unique solution of (17) will be denoted
by u(., zo,yo) and exists for all z € R,

(b) Now let & € C'(R,R) be any smooth function with Yy € R : «'(y) > 0.
For (z,y) € R? we define

Qz,y) = &(u(0,z,y)).

That means, if the solution u(.,z,y) cuts the y-axis in (0,yo), so we set
Q(z,y) := x(yo). From the theory of ordinary differential equations we know
that u(.,z,y) is continuously differentiable with respect to z and y, and the
chain rule thus yields @ € C'(R?*,/R). The function @ is constant along the
soulution curves of (16), (17), respectively.

Now we will show that for all (z,y) € R?

VQ(z,y) L ( —g_ ) (z,y) and therefore VQ(z,y) | (

e ""'ﬁ|

f

) (z,y).
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Suppose {zg, %) € R2. Then we have

9:Q(x0,Y0)3(@0, %0) — 9,Q(0, o) f(zo, %) =
&= §(~To,yo)(3xQ($o,yo) — 0,Q(z0, o) - (mo,yo)) =

= g(an yO) (azQ('TG) U(.’Eo, Zo, yO)) -

L=} lkh|

Q) | Sy

~ 8yQ(z0, u(zo, Zo, Y0)) - (:co,u(:co,a;o,yo))) =
= §’($o,yo)(axQ(xg,u(mo,mo,yo)) +

+ ayQ(ﬂin, u(zo, To, yﬂ)) - (20, %o, yo)) -

= g(zo, %) %(Q(r,u(m, xo,yo)))L:xo -
= g(zo, %) - %(n(u(ﬂ,x,u(m,xo,yo))))Lzmo =
= g(zo, %) - %(N(U(O,xoayo))) e 0.

Therefore and since g{z,y) # 0 there exists some A(z,y) € R satisfying

%(x’y) = )\(m,y)f(m,y),
(18) a0

%(x, y) = Az, v)9(z,v).

From (18), follows A € C°(R*, R).
(c) Finally we have to show that 3,Q(z,y) # 0 and therefore A(z,y) # 0. We
have

du

0
19) 22 -2 0 e .
19) Gy = 5 (s(@On)| = #E0,51) 5-059)
where 6%“3(., Zg,Yo) is the unique solution of the linear initial value problem
ey B 7 F _
WA = _By (—5) (x,u(a:,xo,yg)) cw(z), wl(zo) =1.

Thus we have

x

a du 0
‘—u—(f’?,iﬁo,yo) == —"—*(%,xoyyo)'/exp{@(—
e —

Ny Ik"q

Yo 0o )(f:u(f,ﬁu,yo))} dg,
1 0

and therefore
0

20,00 = [en{2(-1) (6 uten )} de 7 o

Now eq. (19) yields 9,Q(z,y) # 0, and Q. := Q|g, A := Az have the desired
property. [
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3. The n-dimensional case

The existence of Euler’s multiplier in the case of closed
integral surfaces inclosing a critical point

3.1. Assumptions: Let G C R® be any domain with 0 € G. Let A =
(Ay,... An) € CA (G, R") with

Ve G: Az) #0, A(0) = 0.
Let the Pfaffian form w = 37;_, A;dz; satisfy
wAdw = 0.
In some open neighbourhood U C G with 0 € U we assume for all p; € U\ {0}
80 1= {p € G| 3 piecewise continuously differentiable curve o
connecting pg and p, where trace o C G,
and o is everywhere orthogonal to the field vector A,
ie. (&, Ala)) = 0}
to be the smooth boundary of some simply connected domain. Without restric-

tion, we assume 8U = §,,, for some py € OU, and we suppose (A, I/)IBU < 0,
where v is the outer normal on OU wnth respect to U.

Obviously, §,,, is pathwise connected and by p ~ py 1< p € §,, an equivalence
relation is defined.

3.2.Notations: For any q € U (., ¢) shall denote the unique solution of the
initial value problem

(20) ¥=A(y), 7(0)=gq
Any local chart of U will be denoted by
= (Y1, %) WCRT =V COU, (= (G Gamr) = € = 9(C).
For any & = (€1, ..., &) = ¥(¢) € OU we will also write
F(t,¢) = (6, %(€)) = 7(t, ).
Thus, ¥(., () is the unique solution of the initial value problem
3(t.€) = A Q). 70,0 =v()-

As usual, (.,.) denotes the Euklidian scalar product in R*, R***, respectively.




On the global existence of Euler’s multiplier 11

3.3.Lemma: Let the assumptions in 3.1. hold. Let ¢ € U\ {0}. Then the
corresponding field line (., q) penetrates every surface §,, C U in ezactly one
point. Moreover, there holds

t—l}inoof}l(t’ 79 =0
and there exists some o(q) <0 with

lim y(t,q) = £(g) € OU.
t—a(q)

The second condition means that every point ¢ € U \ {0} lies on (exactly) one
ficld line with origin on dU.

ProoOF: Every surface §,, C U is the boundary of some bounded domain
®,, C U, where ®,, is positively invariant with respect to the field line equation

¥ = A7),

and its outer normal in z € §, is given by

viz) = —

Obviously there holds 0 = (), s ®p,. Supposed every solution 7(., g) of (20)

penetrates every surface §,, C U, then we have lim;_,o, ¥(t,q) = 0. Now we
assume 7(.,q) to be any solution of (20) and §, C ©, to be such a surface
satisfying

Vt>0: ’)/(t,f})ﬁgﬁpf;
but
tliglo diSt('Y(th)v%p‘) = 0.

Then there exist some neighbourhood W of §,, and some surface §, C W with
§, C 8y, Oy \ B, CW and some 1 > 0 such that

B 8y x l—n,4n[ = W, (z,0) — z_Q.%

is a bijective mapping. Here we may suppose G, \ 8, C 3 (3;;/ x [0, +77[)- There
exists some ¢ > 0 such that

Vo e W: |Alx)] >e.
For sufficiently large {3 > 0 we have then

Vt >t y(t,q) € By \ Oy
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Let 2(t), o(t) be the coordinates of v(t,q) with respect to §, i.e.

VE >t B(z(t), 0(t)) = v(t.q).

We may assume that z(t) in the sense of a local chart and o(t) are differentiable
with respect to . Then we have for ¢ > #g:

A(y(¢,9)| = (0, Aly(t ) =

= {3(t), A(v(t.@))) — o(t)- ; Ijll(Z(t )
0 < (2( );

| where, because of (2(t), A(z())) = 0, we have

(t
(2(1), A(v(t,9))) — 0, t— oo,

[< : A(zEt)g A(v(t, Q))>’ < const, o(t) =0, t — oo,

dt |A(=(£))]’
0 < < (Z(?Ii)fl)(,z ()( ))> < const,
and thus
Vx>t : —pt) > €

for some &' > 0 and some ¢; > t5. From this we obtain

t

olt) = olty) + / s(r)dr < 0

ty

for sufficiently large ¢ > ¢;, which contradicts our assumption that the surface
§, is not penetrated by v(., ).

The exterior domain @po of any surface §,, is negatively invariant with respect
o (20), and

lim ~(t,q) € oU

t—a(q)
can be shown in a corresponding way. O
3.4.Remark: As a consequence of Lemma 3.3. we note that the mapping
[0, +o0 x OU — U\{0}, (£,€) = ~(t,€)

is bijective.
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3.5. Theorem: Let the assumptions in 3.1. hold. Then there exist functions
AeC*(U,R), Q € C'(U,R) such that

Ve e U\ {0}: VQ(z) = Az)A(z).

In the proof of this theorem the local existence of Euler’s multiplier is used.

PrOOF: (a) Construction of a suitable parametrization of U \ {0}.

(i) We fix any point £ € 8U and consider the field line v(.,£%) (see 3.2.).
According to Lemma 3.3. for every £ € OU there exists exactly one value
(¢, £, €) > 0 satisfying

¥(r(6,€°,6),€) € Baeeo)

For fixed £°,€ € 8U the function (.,£% €) is monotonically increasing, and
according to Remark 3.4. the mapping

@ : [0, +oo[ x AU — T\{0}, ¥(t,€) = v(r(t,%€),€)

is also bijective.

(ii) Now we show the differentiability of @ in the sense of a local chart. From the
theory of ordinary differential equations we know that (.,£)} is continuously
differentiable with respect to £ In order to investigate the differentiability
of 7(t,£9,.), let (o € W C R, £ € V C U, 4({) = & where ¢ is a
local chart (see 3.2.). Furthermore, let G C U be an open neighbourhood of
v(7(t,£°,€),£) € U and suppose ¢ € C*(G,R), 1 € C°(G, R) satisfying

(21) Vz € G: Vep(z) = pl@)Alz), plz)>0.
This is possible, since A(z} # 0 and w A dw = 0. Obviously we have
(22) {z€G:p(x)=p(z)} C B,

for any xy € G, if G is sufficiently small.
Set 7 := 7(t,£% &). Then for sufficiently small § > 0 the mapping

e(v( () =e(3(, ) : Jr—87+68 xW =R

is continuously partially differentiable with the property

03) o (0(3(4,0)) = (Vo(3t,0), 76,0 = 3L NIAGE D > 0

The implicit function theorem yields, after shrinking W and ¢ if necessary,
some C'-function

Fir W = Jr—67+46]

satisfying

vrie Jr =47+ 0, (EW: (tp(’y(r’,f)) = go("/(’r, 0)) e = %(C)).
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From the definition of 7(¢,£% &) and (22) we see that for ( € W and the
considered value ¢

7(¢) = 7(t,€",%(0).

From this we can conlude the continuous differentiability of 7(¢,£%,.) with
respect to & and, using the chain rule, the continuous differentiability of @
with respect to £ in the sense of a local chart.

(iii) Now we prove the differentiability of & with respect to ¢ in any point (Z, £).
() First we assume ~(£,£°) and (7(£,£%€),£) to lie in a common domain
G, where ¢ and u exist as described in (ii). Set 7 := 7(f,£%&). Choosing
01, 82,67, 05 > 0 in a suitable way (and sufficiently small) we can obtain that

V(1= b1,t+8[,€) G, (17 —8,7+8[,€) G

and, since ¢ (7y(-,£)), @ (7(., €%)) are strictly monotonically increasing (cf. (23)),

o(v(JE-d,E+81,€)) = o(v(JF - 6,7 +81,8))-
In particular, we have

Vt € JE— 01, + 6] : % (v(¢,€%) > Q,

V7€ 7 — 01,7 + 8 %w(w('r,f)) > 0,

and the function ¢(y(.,£)) is invertible. Because of eq. (21) ¢ is constant
on every pathwise connected subset of §, N G. Thus, taking into account the
definition of 7(, £9,£), there arises

24 vie [i-b.i+&l: o(v(r(4€,6,6) = e(1(6€7),

and therefore

vie i-d,itahl: 1658 = (0(r(.8)) (et ),

where the right hand side means the inverse mapping of ¢(¥(.,€)) applied to
the argument @(y(f,£%)). From this we can conclude the continuous differen-
tiability of 7(., £, £) with respect to ¢ and

vte Jt—d,t+d] @ (€58 > 0.

(5) Now we consider the case of y(t,£%) and v(7(2,£°, &), €) = (7, ) not lying
in a common domain G as described in (a). There exists a curve connecting
v(£,£%) and (7€) whose trace is a subset of §.; oy and there also exists a
finit number of points 2°, ..., " € ;¢ with the following properties:
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o 20 = 'Y(fa 60)’ N = 7(7‘:’ f)a

e For j =0,..., N — 1 the points 27, z7*! and the connecting piece of curve
are included in a common domain G; in which ¢ = ¢; and p = y; exist
according to (ii).

The corresponding boundary points will be denoted byfo, L EV e
Vie{0,.,N}: o = y(r(i,£%€),€),

where £¥ = €. The argumentation of (i) applied to & instead of £° yields the
existence of some value 7(¢,£7,£711) > 0 such that

’Y(T(ta €j1 fj+l)1 €j+1) = %fy(t,{j):

and thus
soj(v(f(t,ﬁj,fj“),fj“)) = ¢;(v(t,&))

fort € Ji—6,i+48[,j=1,..,N—1, where § = §; > 0 is sufficiently small.
From the definition of 7(.,.,.) we easily see that

7(t,£% 6 = 7z, 8).6,8"), j=1,..N—=1

By induction with respect to j we can conclude the continuous differentiability
of 7(., &%, &) by applying the argumentation of (a) to 7(., &1, £7) and the chain
rule.

From (o) and () we can conclude the continuous differentiability of 7(.) with
respect to . The chain rule finally yields the continuous differentiability of &
with respect to t. We have

B(t,6) = H(t,6,6)3(r(t,€,6),6) = 7(4,€%8) - A(r(7(1,€",).6))
an(_i therefore

(25) VE€ AUt € [0, +oof:  @(t,€) = 7(t,£%8) - A(D(t,€) # 0.

(b) Construction of Euler’s multiplier.
For a local chart ¢ : W C R* — V C U of dU we set

(26) O(t,¢) = @(t,v((), t>0,(eW

Then © is continuously partially differentiable, cf. (a)(iii).
(i) In a first step we show that the Jacobi-matrix DO has an inverse. From
the definition of ® in (a)(i) we know

(27) 60 = +(r(t€ %), %) = (vt w(O).¢).
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thus

O(t,¢) = H6,€,(0) - H(r(6:€%(0). <),

a5) %600 = 5 (16 E9(0), c) +

+{Z (4,6, 9(0)) -8, 8x(0) } (7 (6.6% (). €),

for j =1,...,n — 1. Thus we arrive at

det(ﬁ‘t@ 341@ ‘3@._1@) (t7C) =
= (1,8, 9(Q))det (3|06 - |96u-i7) =
(080 90N
(£ 90
= #{t,€.%(¢)) det (%37 - 3cn_1’7)l - exp ftraceDA(&(t’,c))dt’
_;6_/ 0,¢ L

# 0,
because 4 and ¢, are solutions of the linear differential equation
w(t) = DA(Y(E,Q))w()

(ii) Now let u € C*(R,R;) be an arbitrary function satifying

(20) Vt€R: a(t) <0,  lim ift) =0.
For (t,£) € [0, +o0o[ x U we define

(30) Q(®(t,€) = ult), ie. Q(O]) = u(t)
for £ = 9(¢), ¢ € W C R*'. Then we have

09
Zaxk ot 0) - 5 (4.0),
90,

.aC; (t,¢), j=1,.,n—1,

therefore

31) (DO(,0)T vQO®O))" = (a(t),0,..,0)7 = (@) (1,0,...,0)%,

But there also arises

> 00kt O A (O, <)) 1.8, 9(0) A I

k=1

>0 >0
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>80t OAO0) = %Oulti) w0 52 (B(10)) =

= uo(t.0)- 2TED @y

where p, ¢ are locally as in (ii), i.e.

(32) (DO Q)" A(G® Q)" = (1% %(Q) [A©¢, )] - (1,0,...,0)T.

Defining

_ u(t)
A(2(,€)) = (£, €9, €)[A(D(, 6)) |2’
or, locally,
A(6(t,¢)) = 2

7(8, €%, B(ONIABE, )P

where § = ¥((), we obtain, using equations (31), (32) and the inverse matrix
of (DO)T,

(33) Q(0(1Q) = A6 ) A(O 1)),
vQ(2(1,€)) = A(2(:,)4(2(4,6)

for t € [0,+00[ , £ = ¥(¢) € 8U. Note that {33); is a local, (33); the
corresponding global formulation. The local formulation is necessary to treat
the questions of regularity. As OU is compact, for every ¢ € [0, +oo[ we have

x(t) = gmélarr}T (t,£%€) |A( @(tf” > 0.

Thus, supposing in addition to (29)

li — =
tjflw X(t) 0

and setting A(0) := 0 and VQ(0) := 0, A can be extended to a C%(U,R)-
function and @ to a C1(U, R)-function, and we obtain finally

Ve eU: VQ(z) = Az)A(z). a

The existence of Euler’s multiplier in the case of one
component bounded from below in an infinite cylinder

3.6. Assumptions: Let G C R" be a simply connected domain, let

Z =0xR cC RnJrl’
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A= (Ai,..., An, Any1) € Cly(Z,R**7) with the corresponding Pfaffian form

n+1
Gl e ZAjd:Ej, and the properties
k=1

(34) A1 >e>0 inZ,
(35) wAdw=0 inZ

3.7. Theorem: Let the assumptions in 3.6. hold. Then there exist functions
A€ CYZ,R) end Q € CY(Z,R) satisfying

Mz) #0 in Z,
d@) = Aw, i.€.
V@ = XA in Z.

ProoF: In this proof we will make use of the local existence of Euler’s multi-
plier, which is guaranteed by eq. (35).

(a) Preliminaries and further notations. Let M C Z be any open and con-
nected subset of Z, py € M. Similar to 3.1. we define

%ﬁ: = {p € G| J piecewise continuously differentiable curve o
connecting pg and p, where trace « C M,

and « is everywhere orthogonal to the field vector A,
Le. {a, A(a)) =0}

Obviously, %;\: is pathwise connected. By setting
‘ M
pr~p & PE 8o

an equivalence relation is defined. From Frobenius theory it is well known,
that for every po € Z there exists an open neighbourhood U C Z of py and
functions u € C°(U,R), ¢ € C(U,R) satisfying

(36) Ve e U: Ve(z) = pz)Alz), plx)#0 inl.

If U is sufficiently small, {z € Ujp(z) = ¢(po)} is pathwise connccted, and
we have

§0 = {zeU| o) =)}

Because of Anyi(z) # 0 we also have 9, p(z) # 0, and the implicit {unction
theorem yields, after shrinking U if necessary, the existence of some neigh-
bourhood V < R"* of (po1, ..., 0m) € E* and some C'-function ¥ : V. — R
satisfying

;’; = {fL‘ | (:L'l, ,"l:n) € V, Tn+1 = \P(xl»""xn)}ﬁ
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where 2 = (Z1, .-, Zn, Zn+1)-

Now we are going to show, that for each py € Z the set 82 is a global surface,
i.e. that for each & = (z1,...,2,) € G there exists exactly one Tn.1 € R such
that (%, Zn41) = (F15s Tns Tns1) € 850. Note that until now it is not clear
that 82 NM = 8 for any M C Z. A family (U,).er of open sets U, will be
said to be admzsszble if for each ¢ € I functions ¢ = u, and ¢ = ¢, in the
sense of {36) exist in U,.

(b) 85 is a global surface. Let p = (P, Prt1) = (D1, -, Prs Put1) € Z.

(i) First we will prove that for each & € G there exists at least one £,4; € R
such that (£, Zp41) € % Without restriction let p = (0,...,0,puy1). Since
G is open and pathwise “connected there exists a curve o € C'l([O 1],G) with

a(0) = 0 and a(1) = £. Now let y(.) be the unique solution of the initial value
~ problem

(37) 9(t) = Zak@:

where a = (ay, ..., &,). Since A—“— is uniformely bounded, the solution y(.) of

(37) exists for all t e [0,1]. Thus, v := (@, y) : [0,1] = Z is a C"'-curve which
is always orthogonal to the field vector A:

C!(t), y( )) y([]) = Pn+1s

n+1

<'5f, A(7)> = deAk(a: y) n+1 a,y Zak y) = 0.
k=1

n+1

Therefore (#,y(1)) € §2.

(ii) Now we will prove the uniqueness of this z, . Assume, without restriction,
(0,..,0,1),(0,...,0,y2) € {s‘f, where y; < 9. Let v = (o, y) : [0,1} — Z be a
piecewise continuously differentiable curve satisfying

(v, A(v)y =0,  7(0) = (0,3), (1) =(0,12).

Consequently, v = (@, ..., &, y) satisfies (piecewise) the equation

. il 0
! 0 :
38) y=1| 7 | =a& : + o G 0
On 0 |
Y A _ Aaf{y)
Angr1(v) Ans1()

Since a(0) = (1) = 0 and G is simply connected, « is null homotopic in G.
Let

ha = (haty - Ban) © [0,1] X [0,1] 2 G
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an appropriate homotopy, i.e. ho(1,t) = aft), he(0,t) = 0. We may assume
ha(., ) € C([0,1],G), ha(s,.) to be piecewise continuously differentiable for
each s € [0,1] and

(39) lim sup |ha(s,t)| = 0.

520 ¢ef0,1

Now let y(s,.) be the unique solution of the initial value problem
: N Ay
(40) yh(syt) = Z h'ak(sa t) ' A—_l(ha(syt)a yh(sa t))a yh(sv 0) =¥,
k=1 s

where " means differentiation with respect to ¢. The solution yp(s,.) exists for
.all ¢ € [0,1] and depends continuously differentiably on parameter s. Because
of the regularity of h, and (40) yx(.,1) is a C'-function of parameter s for each
t € [0,1], and since hq(1,t) = &(t) the mapping

by = (hayyn) : [0,1] % [0,1] = Z
is a homotopy satisfying
(h,,(s,t),A(h,,(s, t)))=0 and hy(1,t) = y(t).

Because of eq. (39) and (40) there arises y,(0,1) = y;. Since ya(., 1) is contin-
uous and yp(1,1) = y(1) = y» we can conclude

[yla y2] C yh([O: 1]1 1) and thus {(Oa y)| W S Yy S y?} C S(Z(),yl)-
Assume that y; < yo and let sy € [0, 1] be the largest value satisfying
Vs e [0,s0): wnls,1) =w.

In particular, for each s € [0, so] the curve h,(s,.) is closed. Now we choose
a finite admissible family (U;);=1,. ~, U; C Z, with the following property:
There exist t,...,txy with 0 < #; <13 < ... < iy < 1 satisfying

Vi e [O,tl} 2 hny(SO,t) e U, h”,,(.S'D,tl) e UinNls,

Yt € [tj_htj] : h.,(sg,t) = Uj, huy(S[],tj) C Uj N Uj+1, jg=2,.,N—-1,
Yt € [tN—latNI : h,-r(Sg,t) € Uy, h.),(SU,tN) c Uy NU,

Vi € [tn, 1] : hy(s0,t) € Us.

0y - hfsg)

B (s,)
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Since U; and U; N U are open and hA,(.,.) is continuous there exists some
d; > 0 such that

Vs € [so,80 + 1], t € [0,1] 1 hy(s,t) €Uy,
Vs € [sq,80 + 1] : ho(s,t1) € UhnNUs

and because of

Vs € [s0,50 + 1), t € [0,8] : <H7(s, t), A(hy(s,2))) = 0
we arrive at

Vs € [s0,80 + &), t € [0,2] : gol(h7(s,t)) = ©1(0,11).
In particular,

[s0, 80 + 01] — Ui NUs, s+ hy(s, 1)

is a’'Cl-curve along which ¢; is constant. But this implies that this curve is
orthogonal to A, i.e.

Vs € [30350 +51] : <h’fy(81t1)7A(hw(3,t1))> = 0,
where ' means differentiation with respect to s. Thus, ¢, is also constant along

hy (., t1)|[30,30+6l]. Since each curve h,(s,.) is orthogonal to A, . is constant

along
hoy($, M am t [Erte] = Uny £ hylsit)
for all s € [so, 80 + 61] with the consequence
Vt € [t1,ta], s €[s0, 80 + 61 :
2 (hy(5,1)) = @2 (hy(5,81)) = 2(hy(s0,21)).-

@,=const @,= const

/lh‘{(SO’ )

hs,)

@,= const \ (,= const

h(.,t) @ = const, ¢,= const

By induction we can choose §;, 7 = 1,..., NV, such that 0 < d; < d; ; and

Vs € [sg, 80 + 5], t € [t t5] 0 hy(s, 1) € Uj,
VSE[SD,SQ'F(SJ'] : hW(Sjtj) EUjﬂUj+1, F=T1,0 0 N
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where Uy, := U;. Applying the corresponding argument we obtain
Vit & [tj_l,tj], LS [SQ, Sg + 67;1] :
®; (h"r(s) t)) = Wj(hﬁr(sﬁ tjfl)) =y (h'r(sﬂa tj—l))
for j=2,...,N, and finally
Vi € [tN, 1], s € [80, S0 +5N] :
1 (hfr(S, t)) = (,01(}17(8, tN)) =M (hfr(Sg,tN)).

Since h,(sq,1) = (0,31) = hy(s0,0) we have in particular
Vs € [s0,50 +0n]:  w1(hy(s5,1)) = @1 (0,3).

" Aceording to the definition of sy there arises
hy(s,1) = (0,y) C Uy where y1 #y =y, s\ 5

for sufficiently small s > s5. Applying the implicit function theorem to a
sufficiently small neighbourhood U C U of (0,31) as in (a), we obtain

{(#,y) €U | @i(&,9) = 01(0,11)} = {(@&y) e V xR |y = (&)},

thus y = ¥(0) = y; for sufficiently small s > so which contradicts our assump-
tion.
(¢) Construction of Euler’s multiplier in a circular cylinder. First we construct

the desired functions 2 and A in a circular cylinder included in Z.
Let 39 € G,

Kn(i%) = {z e R*| | - 2°| < R}, K}(2%) CG,
Zpon:= Kp(E) xR

Without restriction we may assume £° = 0. Let (Z,y) € Zor. Let u(.,,1,y, 1)
denote the unique solution of the initial value problem

n Ak

(1) i) == 5

k=1

Since _Ai_l is uniformely bounded, this solution exists at least in | — %, +ﬁ[
The curve

R R el =l Eeelegn
(42) 7:(7?"';771. 1):]_Ta+_ﬁ-{'—}z,]: A
1 v 12" |2 " () = ult, 1,y,8)

is always orthogonal to the field vector A and we have trace v C Zor. Now
let k € Cl (R R) be an arbitrary function satistying

vyeR: «'(y)>0.
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We define
(13) V(3,9) € Zon: Q) = n(u(0,1,4,5)).

From the theory of ordinary differential equations we know that »(0,1,.,.) is
a Cl-function of y and Z, ..., £,, where

Ju

—(0,1,y,%) #0
ay(i inx)?é k)

and the chain rule then yields Q@ € C'(Zy g, R) and

9Q

V(ja y) i ZD,R . a

(£,9) # 0.

We are now going to show that V@ is everywhere parallel to A. Since the
curve  defined above connects the points (%) and (0,u(0, 1,v,%)) and is
always orthogonal to A, we have

(44) (&,9) ~ (0,u(0,1,y,%))

Zg,R

in the sense of part (a) of the proof. From part (b) we know that each point
(£,y) € Zy g is equivalent to exactly one point of the form (0,.) with respect

to Zp,r and also with respect to Z. Let (4, yY) € ﬁ(zz";), ie.
(5) (@) ~ (2.9)
0.R
According to (43) with respect to (£!,y') instead of (Z,y) we have
QYY) = w(u(0,1,4",2")
and, since vy connects the following points, (cf. (41), (42))

(46) (2, y") ~ (0,u(0,1,%%2Y).

Zo,R
From (44), (45) and (46) we can conclude
(0,u(0,1,y,)) £ (0,2(0,1,9",2")),
and therefore, applying the uniqueness result of (b},
w(0,1,,%) = u(0,1,¢",&")

and thus (cf. (43))




24 M. Neudert, W. von Wahl

This implies that @ is constant on each surface %f"-" and thus

1 (0\ 0

0 1 0
- 0 0 i
4 . 3 . g " iy ) )
@ : : 0
0 0 1
A A A
T An+1 \ T Anda \ T Anpr

since these n vectors span the tangential space of Sf“‘. From this we can
conclude the existence of some A = A(Z,y) € R satisfying

. VQ =M inZn
Because of 9,Q(%,y) # 0 and A, 41(£,y) # 0 we have

&2 (&,y)
” . ay \7
A(ﬂ:,y) - An-l—l(-{f;, y) :Ié Da

and A € CO(Z(),R, R)

(d) Globalization of A end . Now we intend to globalize thesc functions.
Assume (W;)jen, to be a complete covering of G in R™ with the following
properties

Wy = K?{(i‘o),

W; = K;;J_(a‘cj) ={zeR"||& - &| < R;}, jeN,
j—1

el Jw, Rj>0
=0

We construct A and @ by induction with respect to j. Assume A and @ with
VQ = A to be constructed on ((J/Z; W.) x R. We redefine

w():=Q(#,.), =4, R:=R;

and make the corresponding construction on Zzo g := W; x R as in (c).
To verify that ) and A are well defined in [((J/Z; W.) x R] N (W; x R) let

-1
pe [(L_JOWL) xR N (W xR), p ~ (#y)

for W = Uf;ol W, or W = W;, respectively. According to the uniqueness result
of (b) there exists exactly one point on the axis (i7,.) which is equivalent
to p with respect to Z or (Uf;(} Wb) x R or W; x R, respectively. Since
# € (UIZy W.) N W; we have

A o]
P (27, y)
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for W = U{;& W, and W = W; and W = G. Thus, each construction of ¢
yields

Qp) = Q#,y),

and this means that (), and therefore also A, is well defined.
Since 2N [(L72; W.) xR] is connected and Q is constant on each 2 N(W,xR),
@ is constant on §2, N | =/ W,) x R]. By the definition

8Q (2
B, VL Y
Mz, y) = i - :
Am+1 (.’L‘, y)
we also obtain a well defined globalization of A. a

3.8.Corollary: Let G C R™ be a simply connected domain, Z := G X R C
Rt let 3 € R and

(I),:(CI’l,...,ch+1)TZ _Z_——>§

be a global C*-diffeomorphism. Further let B € C'(3,R"), w := S"1F) Bedés
satisfying

0P
’ 8-l"";n,+1

wAdw = 0 and <B o@*1>25>0 in 3.

Then there ezist funetions & € C*(3,R) and p € C°(8,R) satisfying
vEed: u(f)#0

and
dQ = pw, ie VQ=uB in3.

PRroOF: In what follows for z € Z we will write

£ = ®x) € 3,
3I1<I>1(3:) 553 8xn+1{b1($)
T(z) = D®(z) = : : ;
Oz, Pna(z) ... azn+1q)n+l($)

S(E) = T7(@71¢)) = (D3)'(z) = D(@})(&).

Thus, we have

n+1 n+l

dée(€) = }:Tkj(x)dxj(x), dzy(z) = ) Sik(€)dEx(£).
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For z € Z we define furthermore

A(z) = (D®)"(z) B(®(z)) = T"(z) B(2(2)),

n+1

Z Aj(z)dz;(z).

Then there holds w A dw = O:

n+1 n+1 6@};
w(:c) = ZTkj(-T)Bk dSCJ = ZBk 33: )d:EJ =
i

j,k=1 J,k=1
n+l1

n+t n+1 5‘A
dw(:z:) = ZdAJ(:E)/\d:EJ = Z 3 l( )dilig/\dﬂfj =

= Y {S2@B(w) +

k=1 mt o p 58,
+ Tkj(x)z -5“5‘5((1’( )) B2, 4 (x )} dzy Adz; =

n+1 J—1
=3y (%7;"; gi;"”( ))B,C(q:(z)) dzy Adx; +

kj].t].\ M
—0

S 0By
+ Y Spl@)Ty(2) 5 (6) dEg A dE =

ikpa=1 ¥q
n+1 5B
= > 5 ©d&nde = dwle).
k.g=1 q

There arises
Ve € Z: w(z)Adw(z) = w(€) Adw(€) = 0.
Moreover, we have for all x € Z:

Aus(5) = (D) "B2()), ens) = (B®()), D(E)enn) -
= (B(2@)), 5—(@)) = {BE), 5o (27'(@)) ) 2

axn+1 al'n—i-l

Theorem 3.7. yields the existence of @ € C! (7, R), reC? (Z IR) satisfying
Ve e Z: VQ(z)=Az)A(z), Azr)#0.
Therefore we have

(D2)"(6) V.Q(27}()) = M 7HE) (D2 ) () A(27(E)),
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thus

VEeB: Ve(Qod@7')(§) = (Ao@7')(§) B().
Now 2 := Qo ® ! and x:= Ao ® ! have the desired property. O
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