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Abstract. We study the variety of solutions of the inhomogeneous div–
curl problem in exterior domains in dependence on the decay conditions
on div and curl. Here we consider the Neumann as well as the Dirich-
let boundary value prescription where in the first case the topological
impact is decisive. In the second case the integrability conditions on
div, curl and the boundary values are more difficult. Finally we present
Hölder estimates for the solution of the Dirichlet or Neumann problem
where it is unique.

1. Introduction

In electrostatics or magnetostatics it is a classical problem to determine a
vector field v by the presciption of div v, curl v and certain boundary values.
If the normal component 〈v, ν〉 is given we speak of a Neumann problem; if
the tangential component ν × v is given, the problem is called a Dirichlet
problem. A basic solution theory of these problems using the fundamental
theorem of vector analysis has been developed by Kress in [8] and has been
extended to exterior domains in [13]. There, in an exterior domain Ĝ the
condition

div v, curl v ∈ L
3
2−δ(Ĝ), 0 < δ < δ0, δ0 ∈ (0, 1

2),

is supposed, which means an averaged decay of |div v| and |curl v| stronger
than 1

|x|2 , |x| → ∞. But these conditions can be weakened by modification of
the integral kernels which appear in the fundamental theorem. This method
goes back to a work of Otto Blumenthal [2]. There, a decomposition of
vector fields defined in the entire space R3 into a source-free and a vorticity-
free component has been proved, where the (smooth) vector field is only
supposed to vanish at infinity. To obtain this, for the two components a
potential and a vector potential, respectively, are constructed, similar to the
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fundamental theorem, but without boundary integrals. An additional term
causes a stronger decay of the integral kernels and guarantees the existence
of the integrals under the conditions supposed.

In the present paper we use this method first to prove an existence theorem
for the div–curl problem in the entire space, where the data for div and curl
are assumed to have decay of order O( 1

|x|β ) at infinity for some β > 0. By
extension of the data and correction of the boundary values by harmonic
vector fields with strong decay, the Neumann and also the Dirichlet problem
for inhomogeneously harmonic vector fields can be reduced to this result.
Supposing β > 1 the solution becomes unique within a certain class. In
the case 0 < β ≤ 1 the solution may increase sublinearly. Of course, there
also exist solutions with stronger asymptotic increase. Here, we study the
asymptotic behaviour and the variety of solutions in dependence on β > 0.

To investigate the topological influence we consider the simple handle
model (see [10, p. 224]) and ignore the abstract definition of the Betti num-
ber, but we note that this model cannot be applied to all domains in R3 (cf.
[4]). Here, the first Betti number of a domain G ⊂ R3 is understood as the
number of handles, i.e., the number of equivalence classes of simply closed
curves in G which are not null homotopic in G. From Alexander’s duality
theorem we know that the number of handles of G is equal to the number of
handles of Ĝ := R3 \G. The second Betti number of G is, in our terminol-
ogy, the number of bounded, connected components of the complementary
domain Ĝ := R3 \G.

In the last paragraph we give some Hölder estimates for the Neumann and
the Dirichlet problem in the case 1 < β < 3.

Solutions of the div–curl problem in exterior domains and their Hölder
estimates are an important tool to study force-free magnetic fields (cf. [7]).

The Dirichlet problem for Poisson’s equation ∆u = f in exterior domains
is treated in [12]. This covers the case where v = ∇u is conservative.

Formulation of the problems. The problems we are going to solve in this
work are the following. The notation is explained in the following subpara-
graph.
Problem E (div–curl problem in the entire space R3). Assume β > 0,

f ∈ Cα
unif(R3, R), |f(x)| = O

(
|x|−β

)
, |x| → ∞,

w ∈ C1(R3, R3) ∩ Cα
unif(R3, R3), |w(x)| = O

(
|x|−β

)
, |x| → ∞,

with
div w = 0 in R3.
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We search for a vector field v ∈ C1+α
unif (R3, R3) satisfying

div v = f and curl v = w in R3

and certain asymptotic conditions.

Problem N (Neumann problem for inhomogeneously harmonic vector fields).
Let G ⊂ R3 be a bounded domain with smooth boundary, first Betti number
ñ and second Betti number zero, Ĝ := R3 \G, β > 0,

f ∈ Cα
unif(Ĝ, R), |f(x)| = O

(
|x|−β

)
, |x| → ∞,

w ∈ C1(Ĝ, R3) ∩ Cα
unif(Ĝ, R3), |w(x)| = O

(
|x|−β

)
, |x| → ∞,

w with zero flux in Ĝ,

g ∈ C0(∂G, R).

Furthermore, let Γ1, . . . ,Γñ ∈R. We search for a vector field v∈C1+α
unif (Ĝ, R3)

with the properties

div v = f, curl v = w in Ĝ,

〈v, ν〉 = g on ∂G,∫
∂G
〈ν × v, zj〉 = Γj , j = 1, . . . , ñ,

where (zj)j=1,...,ñ is a certain basis of the space of so-called Neumann fields
in G; see 2.

The condition “w with zero flux” means that for any closed, oriented
surface S ⊂ Ĝ with outer normal ν there holds∫

S

〈
w, ν

〉
dΩ = 0,

which implies div w = 0. In the case of an interior domain G instead of Ĝ
the additional condition

∫
G fdx =

∫
∂G gdΩ is necessary for the solvability of

the Neumann problem (N) and zj is replaced by ẑj .

Problem D (Dirichlet problem for inhomogeneously harmonic vector fields).
Let G ⊂ R3 be a bounded domain with smooth boundary and first Betti
number ñ and second Betti number zero, Ĝ := R3 \G, β > 0.
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Suppose

f ∈ Cα
unif(Ĝ, R), |f(x)| = O

(
|x|−β

)
, |x| → ∞,

w ∈ C1(Ĝ, R3) ∩ Cα
unif(Ĝ, R3), |w(x)| = O

(
|x|−β

)
, |x| → ∞,

w with zero flux in Ĝ,

γ∗ ∈ C1+α(∂G, R3) with 〈γ∗, ν〉 = 0 on ∂G.

Furthermore, let E ∈ R. We search for a vector field v ∈ C1+α
unif (Ĝ, R3)

satisfying

div v = f, curl v = w in Ĝ,

ν × v = γ∗ on ∂G,∫
∂G
〈v, ν〉 dΩ = E.

The integrability conditions of the Dirichlet problem (D) are more com-
plicated as in the case of the Neumann problem (N). They will be treated
in Section 3. It will turn out that here the first Betti number ñ of Ĝ is not
relevant. But the variety of solutions of (D) is determined by the second
Betti number of Ĝ (cf. [13]). In this work we do not consider this influence
as we suppose G to be a domain.

The asymptotic behaviour of the solutions of these problems will be stud-
ied in Section 3.

General assumptions and notation. In the following, we assume G ⊂ R3

to be a bounded domain with smooth boundary; by “smooth” we mean
sufficient regularity of ∂G without fixing the exact class of regularity. In all
cases considered here the class C6 will be sufficient.

Furthermore, Ĝ means the exterior domain of G; i.e., Ĝ := R3 \G. ν de-
notes, if not explicitly defined otherwise, the outer normal with respect to G.

Furthermore, we suppose that the handle model can be applied to ∂G.
The term “simply closed curve” shall be made precise here: We denote a
curve to be simply closed, if it is closed, imbedded into a surface, and is the
boundary of an oriented surface piece.

A closed surface S is here the smooth boundary ∂D of some bounded
domain D ⊂ R3, where D always lies locally at one side of the boundary.
Then, in particular, S = ∂D is orientable.
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The Euclidean scalar product in R3 is denoted by 〈·, ·〉, i.e.,
〈
x, y

〉
:=∑3

j=1 xjyj . For a differentiable vector field B, the Jacobian matrix will be
denoted by DB. For multi-indices a = (a1, a2, a3) ∈ N3

0, we set

Daf :=
∂|a|f

∂xa1
1 ∂xa2

2 ∂xa3
3

, |a| := a1 + a2 + a3 , a! := a1! a2! a3! .

For a continuous function or vector field f in some (bounded or unbounded)
domain G we set ‖f‖C0(G) := sup

x∈G
|f(x)|. Furthermore, for a function or

vector field f and k ∈ N

‖Dkf‖ := max
|a|=k

‖Daf‖ .

Hölder spaces are the appropriate function spaces in classical potential the-
ory. Let G ⊂ R3 be a domain. For a function or a vector field f ∈ Ck(G)
and 0 < α < 1 we define then

‖f‖Ck+α(G) :=
k∑

j=0

‖Djf‖C0(G) + [Dkf ]Cα(G), (1.1)

where

[Dkf ]Cα(G) := max
|a|=k

sup
x,y∈G

|Daf(x)−Daf(y)|
|x− y|α .

Distinguishing between local and global Hölder continuity, the following no-
tation is customary in the literature (see [5]):

In the local case the condition ‖f‖Ck+α(K) < ∞ holds for every compact
subset K ⊂ G and f belongs therefore to the space Ck+α(G) := Ck+α

loc (G).
If, however, the uniform condition

‖f‖Ck+α(G) <∞

holds, f is said to be f ∈ Ck+α(G) := Ck+α
unif (G) and Ck+α

unif (G) is a Banach
space with the norm defined in (1.1).

For every f ∈ C1+α(Ĝ) there exists an extension f ∈ C1+α
unif (R3), f

∣∣
Ĝ

= f
such that

‖f‖C1+α(R3) ≤ c1 ‖f‖C1+α(Ĝ)
, ‖f‖C0(R3) ≤ c1 ‖f‖C0(Ĝ)

(1.2)

with some constant c1 > 0 independent of f (see [5, Lemma 6.37]; the
unboundedness of Ĝ is here not relevant.). We note that this construction
is linear.
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Concerning the boundary ∂G of G (or Ĝ) f ∈ C1+α(∂G) means f ◦ µ ∈
C1+α(U), where µ : U → ∂G is a local chart of ∂G. The corresponding norm
‖ · ‖C1+α(∂G) therefore depends on the chosen atlas.

In addition to the Hölder norm we need in exterior domains also a weighted
norm characterizing the asymptotic behaviour to obtain global estimates for
potential theoretic problems. Here we set for a function or a vector field f
in Ĝ and β > 0

|‖f |‖β := sup
x∈Ĝ

|x|β |f(x)|.

If |‖f |‖β <∞ we also write |f(x)| = O(|x|−β), |x| → ∞.
The differential operators ∇, div and curl are understood as usual. In

the integral kernels ∇, div , curl denote the corresponding derivatives with
respect to x and ∇′, div ′, curl ′ the derivatives with respect to x′.

For tangential vector fields a defined on surface pieces S ⊂ R3 one can
define the operator Div a as follows. Let x : Q ⊂ R2 → S, (t1, t2) 7→ x(t1, t2)
be a local chart,

gij(t1, t2) =
〈
∂tix, ∂tjx

〉
(t1, t2) (i, j = 1, 2)

the corresponding Gram’s matrix with determinant g = det(gij)ij ,

a
(
x(t1, t2)

)
=

2∑
j=1

aj

(
x(t1, t2)

)
· ∂x
∂tj

(t1, t2)

a continuously differentiable tangential vector field on S. Then we set

Div a :=
1√
g

2∑
j=1

∂
(√

g aj(x)
)

∂tj
.

For C1 vector fields v which are defined in a neighbourhood of ∂G with outer
normal ν there holds the equation

Div (ν × v) = −〈ν, curl v〉. (1.3)

We use the abbreviation r := |x−x′|, if r is not explicitly defined otherwise.
For R > 0 and x0 ∈ R3 we set KR(x0) :=

{
x ∈ R3 : |x− x0| < R

}
.

2. Asymptotic behaviour of harmonic functions and vector
fields. Neumann and Dirichlet fields

From classical potential theory the following theorem is well known:
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Theorem 2.1. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \ G and g ∈ C0(∂G, R). Then the Neumann problem or Dirichlet
problem

∆ϕι = 0 in Ĝ, ι = N, D,

〈∇ϕN , ν〉 = g on ∂G or
ϕD = g on ∂G, respectively,

|ϕι(x)| = O
(
|x|−1

)
, |x| → ∞, ι = N, D,

|∇ϕι(x)| = O
(
|x|−2

)
, |x| → ∞, ι = N, D,

(2.1)

has a unique solution ϕN ∈ C2(Ĝ, R)∩C1(Ĝ, R), ϕD ∈ C2(Ĝ, R)∩C0(Ĝ, R),
respectively.

Lemmas 2.1, 2.2, 2.3, 2.4 and Theorem 2.2 to follow characterize the
asymptotic behaviour of harmonic functions and can be proved by means of
Green’s formula, the mean value theorem, spherical harmonics or Poisson’s
formula. We may omit the proofs.

Lemma 2.1. Let G ⊂ R3 be a bounded domain, Ĝ := R3 \ G, and ϕ ∈
C2(Ĝ, R) ∩ C0(Ĝ, R) with ∆ϕ = 0. Suppose furthermore

|ϕ(x)| = O(|x|β), |x| → ∞ for some β ∈ (0, 1).

Then there exists some u0 ∈ R with

ϕ(x) −→
unif

u0, |x| → ∞.

Lemma 2.2. Let G ⊂ R3 be a bounded domain, Ĝ := R3 \ G, β ∈ R,
ϕ ∈ C2(Ĝ, R) with ∆ϕ = 0 and

|ϕ(x)| = O(|x|β), |x| → ∞.

Then
|∇ϕ(x)| = O(|x|β−1), |x| → ∞.

Lemma 2.3. Let G, Ĝ and g be as in Theorem 2.1, and let ϕ ∈ C2(Ĝ, R) ∩
C1(Ĝ, R) be the unique solution of the Neumann problem (2.1). Then the
following equivalence holds:∫

∂G
g dΩ = 0 ⇐⇒ |ϕ(x)| = O

(
|x|−2

)
, |x| → ∞.
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Harmonic vector fields (i.e., div and curl vanish) with zero normal com-
ponent at the boundary are called Neumann fields. More precisely, we make
the following definition.

Definition 2.1. Assume G ⊂ R3 to be a bounded domain with smooth
boundary, first Betti number ñ and second Betti number zero, Ĝ := R3 \G,
µ > 0.

N µ(R3) :=
{
v ∈ C1(R3, R3) : div v = 0, curl v = 0,

|v(x)| = O(|x|µ), |x| → ∞
}
,

N µ(Ĝ) :=
{
v ∈ C1(Ĝ, R3) ∩ C0(Ĝ, R3) : div v = 0, curl v = 0 in Ĝ,

〈v, ν〉 = 0 on ∂G, |v(x)| = O(|x|µ), |x| → ∞
}
,

N µ
0 (Ĝ) :=

{
v ∈ N µ(Ĝ) : v without circulation

}
,

ZR(Ĝ) :=
{
v ∈ C1(Ĝ, R3) ∩ C0(Ĝ, R3) : div v = 0, curl v = 0 in Ĝ,

〈v, ν〉 = 0 on ∂G, |v(x)| = O(|x|−2), |x| → ∞
}
.

Here, “v without circulation” means that for each simply closed and
piecewise-continuously differentiable curve ` ⊂ Ĝ∫

`
v d~s =

∫ b

a

〈
v(γ(t)), γ̇(t)

〉
dt = 0,

where γ : [a, b] → Ĝ is a parametrization of `. In particular, this implies
that v is the gradient of some function Ψ ∈ C1(Ĝ, R).

To construct a basis of the space ZR(Ĝ) consider the ñ topological inde-
pendent simply closed curves `1, . . . , `ñ in G which are not null homotopic
in G. (See the paragraph “General assumptions and notations.”)

There also exist ñ closed curves ˆ̀
1, . . . , ˆ̀̃

n in Ĝ := R3 \ G having the
corresponding property in Ĝ.

Concerning the curves `1, . . . , `ñ and ˆ̀
1, . . . , ˆ̀̃

n we further assume that
the surface piece Fj , whose boundary is `j , has a positive orientation with
respect to the orientation of `j (cf. the right-hand rule) and is penetrated by
ˆ̀
j in exactly one point. There, the orientation of ˆ̀

j is chosen in such a way
that ˆ̀

j intersects Fj under an angle < π
2 with the normal ν̃j on Fj , and after

interchanging `j and ˆ̀
j , etc. also, the corresponding condition is satisfied.
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Fig. 1 Fig. 2

Now assume an electric current flowing along `i. Then the magnetic field
vi induced by this current is, up to some constant multiplier,

vi(x) = curl
1
4π

∫
`i

1
r

d~s, x ∈ R3 \ trace `i,

where r = |x− x′|. This equation is the so-called Biot–Savart formula. The
field vi is harmonic for i = 1, . . . , ñ and satisfies∫

ˆ̀
j

vi d~s = δij , i, j = 1, . . . , ñ;

see [13, p. 96]. Considering the restriction vi

∣∣
Ĝ

and adding the gradient of

a harmonic function ϕi in Ĝ satisfying〈
∇ϕi, ν

〉∣∣
∂G

= −
〈
vi, ν

〉∣∣
∂G

we obtain that ẑi := vi +∇ϕi is a Neumann field in Ĝ with∫
ˆ̀
j

ẑi d~s = δij , i, j = 1, . . . , ñ. (2.2)

This construction yields us a basis {ẑ1, . . . , ẑñ} of the space ZR(Ĝ) of Neu-
mann fields in Ĝ. By an analogous procedure, interchanging `i and ˆ̀

i, G
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and Ĝ etc., we obtain a basis {z1, . . . , zñ} of ZR(G), which is the vector space
of Neumann fields in G. There holds the equation∫

∂G

〈
ν × zi, ẑj

〉
dΩ =

∫
ˆ̀
i

ẑj d~s = δij , i, j = 1, . . . , ñ (2.3)

(cf. [8, (5.18)] and [13, Lemma I.3.1]).

Remark. dim Z(Ĝ) = ñ.

Lemma 2.4. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, u∞ ∈ R3. Then the problem

u = ∇ϕ,

∆ϕ = 0 in Ĝ,
〈u, ν〉 = 0 on ∂G,
u(x) −→

unif
u∞, |x| → ∞

(2.4)

has a unique solution.

Using the results above and a classification of harmonic polynomials (cf.
[11]), after some technical calculations we arrive at

Theorem 2.2. Let G ⊂ R3 be a bounded domain with smooth boundary,
first Betti number ñ and second Betti number zero. Let Ĝ := R3 \G, k ∈ N0,
β ∈ [0, 1). Then

(i) dimN k(R3) = k2 + 4k + 3,

(ii) dimN k
0 (Ĝ) = k2 + 4k + 3,

(iii) N k+β
0 (Ĝ) = N k

0 (Ĝ),
(iv) N k+β(Ĝ) = Z(Ĝ)⊕N k

0 (Ĝ),
(v) dimN k+β(Ĝ) = ñ + k2 + 4k + 3.

Remark. There also exist Neumann fields which increase more strongly
than every polynomial. One can even prove that for every monotonically
increasing function κ : [0,∞)→ [0,∞) there exists a Neumann field w in Ĝ
and some R > 0 with the property

|w(x1, x2, 0)| > κ
(√

x2
1 + x2

2

)
for x2

1 + x2
2 > R2.

In order to investigate the Dirichlet fields which form the zero space of the
Dirichlet problem (D) we need some nonstandard lemmata of which we will
also give proofs.
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Remark. Let G ⊂ R3 be a bounded domain with (Ck-)smooth boundary
and ϕ ∈ Ck(∂G, R). Then there exists an extension ϕ̄ ∈ Ck

0 (R3, R) of ϕ (i.e.,
ϕ̄|∂G = ϕ).

Lemma 2.5. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, and γ∗ ∈ C1(∂G, R3) a tangential field; i.e., 〈γ∗, ν〉 = 0 on ∂G.
Then the following holds:

There exists a function ϕ ∈ C2(∂G, R) with extension ϕ̄ ∈ C2
0 (R3, R) and

the property
ν × ∇ϕ̄

∣∣
∂G

= γ∗, (2.5)
if and only if

Div γ∗ = 0 and ∀ z ∈ ZR(G) ∪ ZR(Ĝ) :
∫

∂G
〈γ∗, z 〉 dΩ = 0. (2.6)

Proof. (a) We suppose ϕ having the properties mentioned above. Conse-
quently

Div γ∗ = Div (ν ×∇ϕ̄) = −
〈
ν, curl∇ϕ̄

〉
= 0.

For z ∈ ZR(G) ∪ ZR(Ĝ) we have, moreover,∫
∂G
〈γ∗, z 〉 dΩ =

∫
∂G
〈ν ×∇ϕ̄, z 〉 dΩ =

∫
∂G
〈∇ϕ̄× z, ν 〉 dΩ.

In the case z ∈ ZR(G) Gauss’s theorem yields∫
∂G
〈∇ϕ̄× z, ν 〉 dΩ =

∫
G
div

(
∇ϕ̄× z

)
dx = 0.

and in the case z ∈ ZR(Ĝ) we obtain for sufficiently large R > 0∫
∂G
〈∇ϕ̄× z, ν 〉 dΩ = −

∫
KR(0)\G

div
(
∇ϕ̄× z

)
dx = 0.

(b) For an arbitrary vector field v we have v
∣∣
∂G

= 〈ν, v
∣∣
∂G
〉ν + ν×

(
v
∣∣
∂G
×ν

)
.

Since γ∗ is a tangential field, there holds the equivalence

ν ×∇ϕ̄
∣∣
∂G

= γ∗ ⇔ ν ×
(
∇ϕ̄

∣∣
∂G
× ν

)
=

(
ν ×∇ϕ̄

∣∣
∂G

)
× ν = γ∗ × ν,

where ν ×∇ϕ̄
∣∣
∂G
× ν is the tangential derivative of ϕ̄. Thus a function ϕ ∈

C2(∂G, R) with the properties mentioned above exists if and only if for every
closed and piecewise-continuously differentiable curve C with trace C ⊂ ∂G
the condition ∫

C

(
γ∗ × ν

)
d~s = 0
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holds. Let w ∈ C2
0 (R3, R) with w

∣∣
∂G

= γ∗× ν. Condition (2.6) yields on ∂G〈
curlw, ν

〉
= −Div

(
ν × w

)
= −Div

(
ν × (γ∗ × ν)

)
= −Div γ∗ = 0.

(1) Assume C to be a smooth, simply closed curve in ∂G which is null
homotopic in ∂G. Then there exists some compact A ⊂ ∂G with ∂∂GA =
trace C, and from Stokes’ theorem we can conclude∫

C

(
γ∗ × ν

)
d~s =

∫
C
w d~s = ±

∫
A
〈curlw, ν〉 dΩ = 0.

(2) Now, concerning the case of non-null homotopic curves C in ∂G, we first
investigate two special cases:

Consider the jth handle of G. On its boundary there exist, up to homo-
topic equivalence, two closed curves Cj and Ĉj , where Cj is null homotopic

in G but not in Ĝ and Ĉj is null homotopic in Ĝ but not in G (see Figure

3). Moreover, Cj and ˆ̀
j are homotopic in Ĝ, Ĉj and `j are homotopic in G.

Cj
^

Cj

Figure 3 Figure 4

From [8, (5.18)] and [9, Satz 6.5] we know, since 〈curlw
∣∣
∂G

, ν〉 = 0,∫
Ĉj

w d~s = −
∫

∂G
〈ν × w, ẑj 〉 dΩ = −

∫
∂G
〈γ∗, ẑj 〉 dΩ = 0. (2.7)

Applying this argument to KR(0)\G with R > 0 sufficiently large, we obtain∫
Cj

w d~s =
∫

∂G
〈ν × w, zj 〉 dΩ =

∫
∂G
〈γ∗, zj 〉 dΩ = 0.

(3) By approximation of piecewise–continuously differentiable curves by
smooth curves we can prove∫

C

(
γ∗ × ν

)
d~s =

∫
C
w d~s = 0

for every curve C which is homotopic in ∂G to any curve considered above.
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(4) By introducing connecting paths, every simply closed curve can be
decomposed into curves such that each of these is equivalent to some curve
we investigated in (1), (2) and (3) (see Figure 4).

Therefore, we have ∫
C

(
γ∗ × ν

)
d~s = 0

for all closed curves C in ∂G, and the function ϕ can be defined by the curve
integral. ¤
Corollary 2.1. Assume G, Ĝ and γ∗ to be as in Lemma 2.5. Then the
following holds:

There exists a function ψ ∈ C2(Ĝ, R) with

∆ψ = 0 in Ĝ, ν ×∇ψ = γ∗ on ∂G, |ψ(x)| = O
(
|x|−1

)
, |x| → ∞, (2.8)

if and only if the conditions (2.6)1 and (2.6)2 in Lemma 2.5 are satisfied.

Proof. This is an immediate consequence of Lemma 2.5 and Theorem 2.1.

Lemma 2.6. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, E ∈ R. Then the problem

∆ϕ = 0 in Ĝ,
ν × ∇ϕ = 0 on ∂G,
|ϕ(x)| −→

unif
0, |x| → ∞,∫

∂G

〈
∇ϕ, ν

〉
dΩ = E

(2.9)

is uniquely solvable. The solution ϕ satisfies the asymptotic condition

|ϕ(x)| = O
(
|x|−1

)
, |x| → ∞.

Proof. (a) We consider the solution ϕD of the Dirichlet problem (2.1) with
g ≡ 1, where obviously ν ×∇ϕD = 0 on ∂G. The maximum principle yields〈

∇ϕD, ν
〉
≤ 0 on ∂G.

In accordance with Lemma 2.4 we have
〈
∇ϕD, ν

〉
6≡ 0 on ∂G. Thus

η0 :=
∫

∂G

〈
∇ϕD, ν

〉
dΩ < 0

and ϕ := E
η0

ϕD is a solution of the problem.
(b) Now let ϕ satisfy the conditions (2.9) with E = 0. Because of the

second condition we have ϕ
∣∣
∂G
≡ c0 ∈ R. The fact that E = 0 and the

maximum principle yield ϕ
∣∣
∂G
≡ 0 and finally ϕ ≡ 0 in Ĝ. ¤



1360 M. Neudert and W. von Wahl

Analogously to Lemma 2.4 we have the result

Lemma 2.7. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, u∞ ∈ R3. Then the problem

u = ∇ϕ,

∆ϕ = 0 in Ĝ,
ν × u = 0 on ∂G,∫

∂G

〈
∇ϕ, ν

〉
dΩ = 0

u(x) −→
unif

u∞, |x| → ∞

(2.10)

has a unique solution.

3. Solution theory for problems E, N and D

Lemma 3.1. Assume β > 0.
(a) Suppose f ∈ Cα

unif(R3, R), |f(x)| = O
(
|x|−β

)
, |x| → ∞ and

u(x) :=
1
4π

∫
R3

(
∇′ 1
|x− x′| − ∇

′ 1
|x′|

)
f(x′) dx′

for x ∈ R3. Then u : R3 → R is continuously differentiable satisfying

div u = f, curlu = 0 in R3.

(b) Suppose w ∈ C1(R3, R3) ∩ Cα
unif(R3, R3), |w(x)| = O

(
|x|−β

)
, |x| → ∞,

with div w = 0 in R3, and

v(x) :=
1
4π

∫
R3

w(x′) ×
(
∇′ 1
|x− x′| − ∇

′ 1
|x′|

)
dx′

for x ∈ R3. Then v : R3 → R3 is continuously differentiable satisfying

div v = 0, curl v = w in R3.

In the case β > 1 the term ∇′ 1
|x′| in the integral kernels may be omitted.

Proof. For x, x′ ∈ R3, x 6= x′ 6= 0 we set

K(x, x′) := ∇′ 1
|x− x′| − ∇

′ 1
|x′| ; i.e., Kj(x, x′) =

xj − x′j
|x− x′|3 +

x′j
|x′|3 .

Therefore, we have

|Kj(x, x′)| ≤ |x|
|x− x′| · |x′|2 +

|x|
|x− x′|2 · |x′| +

2|x|
|x− x′|3 . (3.1)
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For any bounded domain G ⊂ R3 with 0, x ∈ G and δ := min{dist(0, ∂G),
dist(x, ∂G)}, p, q > 0 with p + q = 3 we obtain∫

R3\G

1
|x− x′|p · |x′|q+β

dx′ ≤ 8π

∫ ∞
δ

r2

r3+β
dr =

8π

β
δ−β . (3.2)

We now define

=11(x) :=
∫
G

K(x, x′)f(x′) dx′, =12(x) :=
∫

R3\G
K(x, x′)f(x′) dx′,

=21(x) :=
∫
G

w(x′)×K(x, x′) dx′, =22(x) :=
∫

R3\G
w(x′)×K(x, x′) dx′.

Existence and differentiability of =12(x) and =22(x) are guaranteed by (3.1)
and (3.2); existence and differentiability of =11(x) and =21(x) are well known
from potential theory ([15, Satz 3.3], cf. [10, 2.4.6.]).

(a) We first consider 4πu(x) = =11(x) + =12(x) for x ∈ G. We have

=11(x) = −∇
∫
G

f(x′)
|x− x′| dx′ −

∫
G

f(x′) · ∇′ 1
|x′| dx′,

and thus ([15, Satz 3.4])

div=11(x) = −∆
∫
G

f(x′)
|x− x′| dx′ = 4πf(x), curl =11(x) = 0.

Since x ∈ G we have, moreover,

div=12(x) = −
∫

R3\G
f(x′) ·

(
∆

1
|x− x′|

)
dx′ = 0,

and, again by differentiation under the integral,

curl =12(x) = 0.

(b) We now consider 4πv(x) = =21(x)+=22(x) for x ∈ G. A short calculation
yields

=21(x) = curl
∫
G

w(x′)
|x− x′| dx′ −

∫
G

w(x′)×∇′ 1
|x′| dx′,

and therefore
div=21(x) = 0,

curl =21(x) = 4πw(x) + ∇ div
∫
G

w(x′)
|x− x′| dx′

= 4πw(x) − ∇
∫

∂G

1
|x− ξ′| · 〈w(ξ′), ν(ξ′)〉 dΩ′,

(3.3)
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where we used div w = 0. Now we investigate the integral =22(x). There
arises, again after some calculations and using div w = 0,

div=22(x) =
∫

R3\G

〈
w(x′), curl ∇ 1

|x− x′|
〉

dx′ = 0

and

curl =22(x) =
∫

R3\G
curl

(
w(x′)×∇′ 1

|x− x′|
)

dx′

= ∇
∫

∂G

1
|x− ξ′| · 〈w(ξ′), ν(ξ′)〉 dΩ′

(3.4)

From (3.3) and (3.4) we can conclude curl v = w. ¤

Lemma 3.2. Assume β > 0, f ∈ C0(R3, R) and |f(x)| = O
(
|x|−β

)
, |x| →

∞. Let

u(x) :=


1
4π

∫
R3

f(x′) ·
(
∇′ 1
|x− x′| − ∇

′ 1
|x′|

)
dx′ for 0 < β ≤ 1,

1
4π

∫
R3

f(x′) · ∇′ 1
|x− x′| dx′ for 1 < β ≤ ∞.

Then

|u(x)| =



O
(
|x|1−β

)
, |x| → ∞, for 0 < β < 1,

O
(
ln|x|

)
, |x| → ∞, for β = 1.

O
( 1
|x|β−1

)
, |x| → ∞, for 1 < β < 3,

O
( ln|x|
|x|2

)
, |x| → ∞, for β = 3,

O
( 1
|x|2

)
, |x| → ∞, for 3 < β ≤ ∞.

The corresponding estimates also hold for v as in Lemma 3.1.

Proof. (a) Suppose 0 < β < 3, 0 < δ < 1
4 , x ∈ R3 \ {0}. We obtain∣∣∣ ∫

Kδ|x|(0)
f(x′) · ∇′ 1

|x− x′| dx′
∣∣∣ ≤ |‖f |‖β ∫

Kδ|x|(0)

1
|x− x′|2 · |x′|β dx′

≤ |‖f |‖β
(1− δ)2 |x|2

∫
Kδ|x|(0)

1
|x′|β dx′ ≤ 4πδ3−β|‖f |‖β

(1− δ)2(3− β)
|x|1−β

(3.5)
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since |x′| < δ|x| and |x− x′| ≥ (1− δ)|x| for x′ ∈ Kδ|x|(0).
For 0 < β < 1, we have furthermore∣∣∣ ∫

Kδ|x|(0)
f(x′) · ∇′ 1

|x′| dx′
∣∣∣ ≤ 4πδ1−β

1− β
· |‖f |‖β · |x|1−β; (3.6)

in the case β = 1, however, for arbitrary δ0 > 0 and |x| > δ0
δ ,∣∣∣ ∫

Kδ|x|(0)
f(x′) · ∇′ 1

|x′| dx′
∣∣∣ ≤ ∫

Kδ0
(0)

|f(x′)|
|x′|2 dx′ +

∫
Kδ|x|(0)\Kδ0

(0)

|f(x′)|
|x′|2 dx′

≤ 4π
(
δ0 · ‖f‖∞ + |‖f |‖1 · ln

δ|x|
δ0

)
. (3.7)

For x′ ∈ Kδ|x|(x) we have |x′| ≥ (1− δ)|x|. Thus, for |x| > 0 and arbitrary
β > 0 we arrive at∣∣∣ ∫

Kδ|x|(x)
f(x′) · ∇′ 1

|x− x′| dx′
∣∣∣ ≤ 4πδ

(1− δ)β
· |‖f |‖β · |x|1−β. (3.8)

Furthermore, for 0 < β ≤ 1, there holds∣∣∣ ∫
Kδ|x|(x)

f(x′) · ∇′ 1
|x′| dx′

∣∣∣ ≤ |‖f |‖β · ∫
(1−δ)|x|≤|x′|≤(1+δ)|x|

|x′|−(2+β) dx′

=

{
4π

1−β ·
(
(1 + δ)1−β − (1− δ)1−β

)
· |‖f |‖β · |x|1−β, for 0 < β < 1,

4π ln1+δ
1−δ · |‖f |‖β , for β = 1.

(3.9)

Now we define Γ := R3 \
(
Kδ|x|(0) ∪Kδ|x|(x)

)
,

Γ1 :=
{
x′ ∈ Γ : |x− x′| < |x′|

}
, Γ2 :=

{
x′ ∈ Γ : |x− x′| ≥ |x′|

}
,

and obtain for p, q ≥ 0, p + q = 3 and β > 0 (cf. (3.1), (3.2))∫
Γ

|x|
|x− x′|p · |x′|q+β

dx′ ≤
∫

Γ1

|x|
|x− x′|3+β

dx′+
∫

Γ2

|x|
|x′|3+β

dx′ ≤ 8π

βδβ
·|x|1−β.

(3.10)
Finally, the statement follows from (3.5), (3.6), (3.7), (3.8), (3.9), (3.1), and
(3.10).

(b) Suppose again 0 < δ < 1
4 , β > 1, and define Γ as in the proof of (a).

We now have∣∣∣ ∫
Γ

f(x′) · ∇′ 1
|x− x′| dx′

∣∣∣ ≤ ∫
Γ

|‖f |‖β
|x− x′|2 · |x′|β dx′ ≤ 8π

(β − 1)δβ−1
· |‖f |‖β|x|β−1

.

(3.11)
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From (3.5), (3.8) and (3.11) we obtain the desired estimate for the case
1 < β < 3.

In the case β = 3 we have for arbitrary δ0 > 0 and |x| < δ0
δ∣∣∣ ∫

Kδ|x|(0)
f(x′) · ∇′ 1

|x− x′|dx′
∣∣∣≤∫

Kδ0
(0)

|f(x′)|
|x− x′|2 dx′ +

∫
Kδ|x|(0)\Kδ0

(0)

|f(x′)|
|x− x′|2 dx′

≤ 4πδ3
0

3(1− δ)2
· ‖f‖∞|x|2 +

4π

(1− δ)2
· |‖f |‖3|x|2 · ln

δ|x|
δ0

. (3.12)

In the case β = 3 the desired estimate follows from (3.8), (3.11) and (3.12).
Now assume β > 3, let R0 > 0 and 0 < σ < R0

4 . Then x′ ∈ Kσ(0) satisfies
|x− x′| ≥ |x| − |x′| > |x| − σ, and for |x| ≥ R0 and thus |x| − σ ≥ 3

4 |x|
we have∣∣∣ ∫

Kσ(0)
f(x′)·∇′ 1

|x− x′| dx′
∣∣∣ ≤ 1

(|x| − σ)2
·
∣∣∣ ∫

Kσ(0)
f(x′) dx′

∣∣∣ ≤ (4σ)3π‖f‖∞
33|x|2 .

(3.13)
We define

Γ̃ := R3 \
(
Kσ(0) ∪Kδ|x|(x)

)
,

Γ̃1 :=
{
x′ ∈ Γ̃ : |x− x′| < |x′|

}
, Γ̃2 :=

{
x′ ∈ Γ̃ : |x− x′| ≥ |x′|

}
and obtain∣∣∣ ∫

Γ̃1

f(x′) · ∇′ 1
|x− x′| dx′

∣∣∣ ≤ ∫
Γ̃1

|‖f |‖β
|x− x′|2+β

dx′ ≤ 4π

(β − 1)δβ−1
· |‖f |‖β|x|β−1

,∣∣∣ ∫
Γ̃2

f(x′) · ∇′ 1
|x− x′| dx′

∣∣∣ ≤ 4|‖f |‖β
|x|2 ·

∫
Γ̃2

1
|x′|β dx′ ≤ 16π

(β − 3)σβ−3
· |‖f |‖β|x|2 .

(3.14)

From (3.8), (3.13) and (3.14) we can conclude the result for the case β > 3.

Theorem 3.1. Assume β > 0 and the assumptions of Problem E to be
satisfied.

(a) If 0 < β ≤ 1 there exist solutions v ∈ C1+α(R3, R3) of Problem E
satisfying

|v(x)| =

{
O

(
|x|1−β

)
, |x| → ∞ for β < 1,

O
(
ln|x|

)
, |x| → ∞ for β = 1.

The solutions of the homogeneous problem are constant vectors.
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(b) If β > 1 there exists a unique solution v ∈ C1+α(R3, R3) of Problem
E satisfying

|v(x)| =


O

( 1
|x|β−1

)
, |x| → ∞ for 1 < β < 3,

O
( ln|x|
|x|2

)
, |x| → ∞ for β = 3,

O
( 1
|x|2

)
, |x| → ∞ for β > 3.

Proof. The existence of the solutions follows from the Lemmas 3.1 and
3.2. The uniqueness can be proved by Green’s formula or by means of
Theorem 2.2. ¤

These preparations lead us to the solvability result of Problem N.

Theorem 3.2. Assume β > 0 and the assumptions of Problem N to be
satisfied.

(a) If 0 < β ≤ 1 there exist solutions v of Problem N satisfying

|v(x)| =

{
O

(
|x|1−β

)
, |x| → ∞ for β < 1,

O
(
ln|x|

)
, |x| → ∞ for β = 1.

The general solution of the corresponding homogeneous problem (f = 0,
w = 0, g = 0, Γj = 0) is a three-dimensional real vector space. Two
solutions v1, v2 of the same inhomogeneous problem are equal, if

v1(x) − v2(x) −→
unif

0, |x| → ∞.

(b) If 1 < β ≤ ∞ there exists a unique solution v of Problem N satisfying

|v(x)| =


O

( 1
|x|β−1

)
, |x| → ∞ for 1 < β < 3,

O
( ln|x|
|x|2

)
, |x| → ∞ for β = 3,

O
( 1
|x|2

)
, |x| → ∞ for β > 3.

(c) If f = 0, w = 0, Γ1 = · · · = Γñ = 0 and
∫

∂G
g dΩ = 0, then even

|v(x)| = O
( 1
|x|3

)
, |x| → ∞.

Proof. (1) We choose R0 > 0 such that G ⊂ KR0(0), and set G := KR0(0) \
G. Let f̄ ∈ Cα(KR0(0), R) be an extension of f |G to KR0(0) and A ∈
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C2(G, R3) a vector potential of w with extension Ā ∈ C2(KR0(0), R3) to
KR0(0). Then

w̄ :=

{
w in Ĝ,

curl Ā in G

is a continuously differentiable extension of w to R3 satisfying div w̄ = 0
in R3. Now let ũ be a solution of Problem E with prescriptions f̄ and w̄

according to Theorem 3.1. Furthermore let ϕ = ϕN ∈ C2(Ĝ, R) ∩ C1(Ĝ, R)
be the unique solution of the Neumann problem (2.1) according to Theorem
2.1 with the boundary value prescription 〈∇ϕ, ν〉 = g − 〈ũ|∂G, ν〉. Thus,
u := ũ +∇ϕ satisfies div u = f , curlu = w in Ĝ, 〈u, ν〉 = g on ∂G and the
asymptotic conditions for |x| → ∞.

Let Γ′1, . . . ,Γ
′
ñ be the generalized circulations of u; i.e.,

∫
∂G〈ν×u, zj〉 dΩ =

Γ′j . We set

v(x) := u(x) −
ñ∑

j=1

(Γj − Γ′j) ẑj(x)

for x ∈ Ĝ. From equation (2.3) and |̂zj(x)| = O
(
|x|−2

)
, |x| → ∞, we

conclude that v is a solution of the Neumann problem (N).
(2) Now let u be a solution of the homogeneous Problem N. Since u is

without circulation in Ĝ, there exists a potential ψ ∈ C2(Ĝ, R) with u = ∇ψ

in Ĝ. Because of div u = 0 we have ∆ψ = 0 in Ĝ, and therefore also ∆∇ψ = 0
in Ĝ.

In the case |u(x)| → 0, |x| → ∞ we have u = 0 in Ĝ according to Lemma
2.4. If, however, we have |∇ψ(x)| = O

(
|x|β0

)
, |x| → ∞ for some β0 ∈ (0, 1)

there exists, according to Lemma 2.1, u∞ ∈ R3 such that

∇ψ(x) −→
unif

u∞, |x| → ∞.

Now Lemma 2.4 yields the rest.
The statement of (c) follows from Lemma 2.3. ¤
Now we are going to investigate the integrability conditions of Problem D.

Remark 3.1. The condition

Div γ∗ = −〈ν, w〉 on ∂G

is necessary for the solvability of Problem D; cf. equation (1.3).
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Lemma 3.3. For β > 1 the condition

∀ẑ ∈ ZR(Ĝ) :
∫

Ĝ
〈w, ẑ 〉 dx +

∫
∂G
〈γ∗, ẑ 〉 dΩ = 0

is necessary for the solvability of Problem D.

Proof. Without restriction assume 1 < β < 3. Let R > 0 be such that
G ⊂ KR(0). Let ẑ ∈ ZR(Ĝ), curl v = w in Ĝ and ν × v = γ∗ on ∂G. Then
we have∫

Ĝ∩KR(0)
〈curl v, ẑ 〉 dx =

∫
Ĝ∩KR(0)

div
(
v × ẑ

)
dx +

∫
Ĝ∩KR(0)

〈v(x), curl ẑ(x)︸ ︷︷ ︸
=0

〉 dx

= −
∫

∂G
〈v × ẑ, ν〉 dΩ′ +

∫
∂KR(0)

〈
v(ξ′)× ẑ(ξ′),

ξ′

R

〉
dΩ′.

According to the assumption there holds

|〈w(x), ẑ(x)〉| = O
(
|x|−(2+β)

)
, |v(x)× ẑ(x)| = O

(
|x|−(1+β)

)
, |x| → ∞,

and thus

lim
R→∞

∫
Ĝ∩KR(0)

〈w, ẑ〉 dx =
∫

Ĝ
〈w, ẑ〉 dx, lim

R→∞

∫
∂KR(0)

〈
(v×ẑ)(ξ′),

ξ′

R

〉
dΩ′ = 0.

This implies the statement of the lemma. ¤
Obviously the condition in Lemma 3.3 can not be extended to the case

β ∈ (0, 1). In what follows, we look for a suitable generalization which also
holds in that case.

Lemma 3.4. Suppose G and Ĝ as in Problem D; assume G ⊂ R3 to be a
bounded, simply connected domain with smooth boundary and G ⊂ G.

Let u ∈ C1(Ĝ, R3) be a vector field with

∀x ∈ Ĝ ∩ G : curlu(x) = 0.

Then
(i) Div (ν × u) = 0 on ∂G,

(ii) ∀ẑ ∈ ZR(Ĝ) :
∫

∂G
〈ν × u, ẑ 〉 dΩ = 0.

Proof. Equation (i) is clear. We determine Γ1, . . . ,Γñ such that ũ :=
u +

∑ñ
j=1 Γj ẑj is without circulation in Ĝ ∩ G (cf. (2.3), (2.7)). Let ψ ∈

C2(Ĝ ∩ G, R) be a potential of ũ. Assume G′ ⊂ R3 to be a bounded, simply
connected domain with smooth boundary satisfying G ⊂ G′ ⊂ G′ ⊂ G, and
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let ψ̃ ∈ C2
0 (Ĝ, R) be an extension of ψ

∣∣
Ĝ∩G′ . Then for sufficiently large R > 0

and arbitrary ẑ ∈ ZR(Ĝ), we have∫
∂G
〈ν × ũ, ẑ〉 dΩ =

∫
∂G
〈ν ×∇ψ̃, ẑ〉 dΩ =

∫
∂G
〈∇ψ̃ × ẑ, ν〉 dΩ

=
∫

∂KR(0)

〈
(∇ψ̃ × ẑ)(ξ′),

ξ′

R

〉
dΩ′ −

∫
KR(0)∩Ĝ

div (∇ψ̃ × ẑ) dx = 0.

Since |̂z(x)| = O(|x|−2), |x| → ∞ for ẑ ∈ ZR(Ĝ) we obtain

∀ẑ ∈ ZR(Ĝ) :
∫

∂G
〈ν × ẑj , ẑ 〉 dΩ = 0, j = 1, . . . , ñ, (3.15)

and we can conclude equation (ii). ¤

Lemma 3.5. Let the assumptions of Problem D be satisfied and G be a
bounded, simply connected domain with smooth boundary and G ⊂ G. Fur-
thermore, let w0 ∈ C1

0 (Ĝ, R3) be a vector field with zero flux and

∀ x ∈ G ∩ Ĝ : w(x) = w0(x).

Then the condition

∀ẑ ∈ ZR(Ĝ) :
∫

Ĝ
〈w0, ẑ 〉 dx +

∫
∂G
〈γ∗, ẑ 〉 dΩ = 0

is necessary for the solvability of Problem D.

Proof. Let v0 ∈ C2(Ĝ, R3) with curl v0 = w0. Then for arbitrary ẑ ∈ ZR(Ĝ)
Lemmas 3.4 and 3.3 yield∫

∂G
〈γ∗, ẑ 〉 dΩ =

∫
∂G
〈ν×v, ẑ 〉 dΩ =

∫
∂G
〈ν×v0, ẑ 〉 dΩ = −

∫
Ĝ
〈w0, ẑ 〉 dx. ¤

Remarks. (1) For any w as in Problem D such a corresponding w0 can be
obtained by construction of a C2

0 extension of a vector potential of w
∣∣
Ĝ∩G .

(2) The condition w0 ∈ C1
0 (Ĝ, R3) can be replaced by

w0 ∈ C1(Ĝ, R3), |w0(x)| = O
(
|x|−β

)
, |x| → ∞, β > 1.

(3) According to Lemma 3.4 the value of
∫
Ĝ〈w0, ẑ 〉 dx does not depend

on the special choice of w0.

Theorem 3.3. Suppose the assumptions of Problem D to be satisfied. Let

Div γ∗ = −
〈
ν, w

〉
on ∂G.
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(a) Let 0 < β ≤ 1. Assume w0 as in Lemma 3.5. If

∀ẑ ∈ ZR(Ĝ) :
∫

Ĝ
〈w0, ẑ 〉 dx +

∫
∂G
〈γ∗, ẑ 〉 dΩ = 0,

then Problem D has a solution satisfying the asymptotic conditions as in
Theorem 3.1. The general solution of the corresponding homogeneous problem
(i.e., f = 0, w = 0, g = 0, E = 0) is a three-dimensional real vector space.

(b) Let β > 1. If

∀ẑ ∈ ZR(Ĝ) :
∫

Ĝ
〈w, ẑ 〉 dx +

∫
∂G
〈γ∗, ẑ 〉 dΩ = 0,

then Problem D has a unique solution satisfying the asymptotic conditions
as in Theorem 3.1.

Proof. As in the proof of Theorem 3.2 we extend f and w by f̄ and w̄
to the entire space R3. Then let ṽ be any solution of Problem E with the
corresponding asymptotic behaviour according to Theorem 3.1.

Then we have Div
(
ν × ṽ

)
= −

〈
ν, w

〉
on ∂G and

∀ x ∈ G ∩ Ĝ : curl ṽ(x) = w(x) = w(x) = w0(x). (3.16)

Now we set

Γj :=
∫

∂G

〈
γ∗ − ν × ṽ, zj

〉
dΩ, j = 1, . . . , ñ,

and for ξ ∈ ∂G

γ∗∗(ξ) := γ∗(ξ)− ν(ξ)× ṽ(ξ) +
ñ∑

j=1

Γjν(ξ)× ẑj(ξ).

Then, from (2.3), (3.16), (3.15) and Lemma 3.5 we can conclude

Div γ∗∗ = 0,

∫
∂G

〈
γ∗∗, zj

〉
dΩ =

∫
∂G

〈
γ∗∗, ẑj

〉
dΩ = 0, j = 1, ..., ñ.

Let ψ be any solution of Problem (2.8) in Corollary 2.1 and ϕ the appropriate
solution of Problem (2.9) in Lemma 2.6. Then

v := ṽ
∣∣
Ĝ
−

ñ∑
j=1

Γj ẑj + ∇ψ + ∇ϕ

is a solution of Problem D with the corresponding asymptotic behaviour.
Now let u ∈ C1(Ĝ, R3) be any Dirichlet field; i.e.,

div u = 0, curlu = 0 in Ĝ, ν × u = 0 on ∂G.
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Since u is without circulation in Ĝ there exists a potential ψ ∈ C2(Ĝ, R)
satisfying ∆ψ = 0 and u = ∇ψ in Ĝ, and ψ

∣∣
∂G

is constant. In the case (b)
Lemma 2.6 yields the uniqueness.

In the case (a) the solutions of the homogeneous problem are those of
Problem (2.10) in Lemma 2.7. ¤

4. Hölder estimates

The aim of this paragraph is to transfer the Hölder estimates for the div–
curl problem for inhomogeneously harmonic vector fields in interior domains
which are already known (cf. [3]) to the exterior case. To realize this, an
additional term characterizing the asymptotic behaviour of the data must
be introduced. Of course, the uniqueness of the solution is necessary for the
existence of such estimates. Here, we treat only the case 1 < β < 3.

Lemma 4.1. Let β > 1, f ∈ Cα
unif(R3, R), |‖f |‖β <∞,

Φ : R3 → R3, Φ(x) :=
1
4π

∫
R3

∇1
r
(x, x′)f(x′) dx′.

Then Φ ∈ C1+α
unif (R3, R) and there exists some c(α, β) > 0 independent of f

satisfying

‖Φ‖C1+α(R3) ≤ c(α, β) ·
(
‖f‖Cα(R3) + |‖f |‖β

)
.

This lemma can be proved by methods which are similar to those of [5,
Lemma 4.4]. We may omit the proof.

Lemma 4.2. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, f ∈ Cα(G, R). Let furthermore

ϕ : R3 → R, ϕ(x) :=
1
4π

∫
G

1
| x− x′ | · f(x′) dx′.

Then the following estimate holds:

‖ϕ‖
C2+α(Ĝ)

≤ c(α, G) · ‖f‖Cα(G).

This is a classical potential-theoretic result and can be proved by the aid
of the Hölder–Korn–Lichtenstein–Giraud inequality, the jump relations and
estimates up to the boundary for second-order elliptic differential operators
(cf. [1, part II, chapter 5]).
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Lemma 4.3. Let G ⊂ R3 be a bounded domain with smooth boundary,
Ĝ := R3 \G, β > 1, f ∈ Cα

unif(Ĝ, R) with |‖f |‖β <∞,

Φ : Ĝ → R3, Φ(x) :=
1
4π

∫
Ĝ
∇ 1

r
(x, x′) f(x′) dx′.

Then there holds the inequality

‖Φ‖
C1+α(Ĝ)

≤ c(α, β, G) ·
(
‖f‖

Cα(Ĝ)
+ |‖f |‖β

)
.

This is a consequence of the two lemmata above and the extendability
result of [5, Lemma 6.37].

Lemma 4.4. Let the assumptions of Problem N be satisfied, β > 1, g ∈
C1+α(∂G, R). Let v be the unique solution of Problem N according to The-
orem 3.2 (b). Then γ∗ := ν × v satisfies the following integral equation:

γ∗(ξ) + Rγ∗(ξ) = − 1
2π

ν(ξ) ×
( ∫

Ĝ
∇1

r
(ξ, x′) f(x′) dx′

−
∫

Ĝ
∇1

r
(ξ, x′)× w(x′) dx′ +

∫
∂G
∇1

r
(ξ, ξ′) g(ξ′) dΩ′

)
,

(4.1)

where ξ ∈ ∂G, r = |ξ − x′|, r = |ξ − ξ′|, respectively, and

Rγ∗(ξ) := − 1
2π

∫
∂G

ν(ξ) ×
(
∇1

r
(ξ, ξ′) × γ∗(ξ′)

)
dΩ′.

At this occasion we remark that the boundary integral in equation (4.1)
only exists in the sense of Cauchy’s principal value, whereas the integral
in the definition of Rγ∗ exists in the L1 sense (cf. [15, Satz 4.4] and [13,
Definition I.3.2]).

Proof. Suppose R > 0 such that G ⊂ KR(0) and set Ĝ(R) := KR(0) \ G.
In [13, Satz I.3.6] the corresponding integral equation has been proved for
bounded domains. We apply this result to Ĝ(R) and let R tend to ∞. ¤

Theorem 4.1. Let G ⊂ R3 be a bounded domain with smooth boundary,
1 < β < 3, v ∈ C1(Ĝ, R3) with

|v(x)| = O
(
|x|−(β−1)

)
, |div v(x)|, |curl v(x)| = O

(
|x|−β

)
, |x| → ∞.
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Then for x ∈ Ĝ we have

v(x) =− 1
4π

∫
Ĝ
∇1

r
(x, x′)div v(x′) dx′ + 1

4π

∫
Ĝ
∇1

r
(x, x′)× curl v(x′) dx′

− 1
4π

∫
∂G
∇1

r
(x, ξ′) ·

〈
ν(ξ′), v(ξ′)

〉
dΩ′

+ 1
4π

∫
∂G
∇1

r
(x, ξ′)×

(
ν(ξ′)× v(ξ′)

)
dΩ′.

Proof. The corresponding statement for Ĝ(R) follows immediately from the
fundamental theorem. The limit R→∞ then yields the formula above. ¤

Theorem 4.2. Let the assumptions of Problem N be satisfied, 1 < β < 3,
g ∈ C1+α(∂G, R). Let v be the unique solution of Problem N according
to Theorem 3.2 (b). Then there exists some constant c = c(α, β, G) > 0,
independent of v and the given data, such that

‖v‖
C1+α(Ĝ)

+ |‖v|‖β−1 ≤ c ·
(
‖f‖

Cα(Ĝ)
+ |‖f |‖β + ‖w‖

Cα(Ĝ)
+ |‖w|‖β

+ ‖g‖C1+α(∂G) +
ñ∑

j=1

|Γj |
)
.

Proof. (a) Let γ∗ := ν × v|∂G. Obviously γ∗ ∈ C1(∂G, R3). From the
boundedness of ‖γ∗‖C1+α(∂G) we later conclude γ∗ ∈ C1+α(∂G, R3). The
operator R is a compact operator in TC0(∂G), where

TC0(∂G) :=
{
γ∗ ∈ C0(∂G, R3) :

〈
ν, γ∗

〉
= 0

}
is the space of continuous tangential vector fields on ∂G; cf. [13, Satz I.3.7].
There it has been shown that N (I +R) = {ν×v : v ∈ ZR(Ĝ)} and the Riesz
number of R is 1. Here, I denotes the identity, N (I + R) the zero space,
R(I + R) the range of the operator I + R in TC0(∂G). If the regularity
of the boundary is sufficient, we have N (I + R) ⊂ C1+α(∂G, R3). Riesz’s
decomposition theorem then yields

TC0(∂G) = N (I + R) ⊕ R(I + R)

with the closed spaces N (I + R) and R(I + R), which are invariant under
the operator I +R. Thus, for any tangential vector field γ∗ ∈ C1+α(∂G, R3)
there exists a unique decomposition

γ∗ = γ∗1 + γ∗2 , γ∗1 ∈ R(I + R), γ∗2 ∈ N (I + R).
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One can prove that (cf. [6, Satz 6.2])

R
(
TC0(∂G) ∩ C1+α(∂G, R3)

)
⊂ TC0(∂G) ∩ C2+α(∂G, R3)

and

‖Rγ∗‖C2+α(∂G) ≤ c(α, G) ‖γ∗‖C1+α(∂G)

for any γ∗ ∈ TC0(∂G) ∩ C1+α(∂G, R3). The imbedding

C2+α(∂G, R3) ↪→ C1+α(∂G, R3)

being compact, the operator R is compact with respect to the norm
‖ · ‖C1+α(∂G). Therefore, there exists some constant c = c(α, G) > 0 such
that

‖(I + R)γ∗1‖C1+α(∂G) ≥ c ‖γ∗1‖C1+α(∂G)

for γ∗1 ∈ R(I + R) ∩ C1+α(∂G, R3). For the generalized circulations of γ∗1

Γ̃j :=
∫

∂G
〈γ∗1 , zj〉dΩ, j = 1, . . . , ñ,

there holds an estimate

|Γ̃j | ≤ c(G) ‖γ∗1‖C0(∂G) ≤ c(G) ‖γ∗1‖C1+α(∂G).

Hence, we obtain∫
∂G
〈γ∗2 , zj 〉dΩ = Γj − Γ̃j ; thus γ∗2 = ν ×

( ñ∑
j=1

(Γ̃j − Γj) ẑj

)
.

As a consequence of this we have

‖γ∗2‖C1+α(∂G) ≤ max
j=1,...,ñ

‖ν × ẑj‖C1+α(∂G) ·
ñ∑

j=1

|Γj − Γ̃j |

≤ c(α, G) ·
( ñ∑

j=1

|Γj | + ‖γ∗1‖C1+α(∂G)

)
,

and therefore

‖γ∗‖C1+α(∂G) ≤ c(α, G) ·
(
‖(I + R)γ∗‖C1+α(∂G) +

ñ∑
j=1

|Γj |
)
.
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(b) Applying the Schauder estimates for boundary-layer potentials (cf.
[16]) we obtain∥∥∥∫

∂G
∇1

r
(·, ξ′)g(ξ′) dΩ′

∥∥∥
C1+α(Ĝ)

≤ c(α, G)‖g‖C1+α(∂G),∥∥∥∫
∂G
∇1

r
( ·, ξ′)× γ∗(ξ′) dΩ′

∥∥∥
C1+α(Ĝ)

≤ c(α, G) ‖γ∗‖C1+α(∂G).

Because of the quadratic asymptotic decay of the integrals there also hold
estimates of the form

|‖
∫

∂G
∇1

r
( ·, ξ′)g(ξ′) dΩ′|‖β−1 ≤ c(β, G) ‖g‖C1+α(∂G),

|‖
∫

∂G
∇1

r
( ·, ξ′)× γ∗(ξ′) dΩ′|‖β−1 ≤ c(β, G) ‖γ∗‖C1+α(∂G).

Lemma 4.3 yields

‖
∫

Ĝ
∇1

r
( ·, x′)f(x′) dx′‖

C1+α(Ĝ)
≤ c(α, β, G) ·

(
‖f‖

Cα(Ĝ)
+ |‖f |‖β

)
,

‖
∫

Ĝ
∇1

r
( ·, x′)× w(x′) dx′‖

C1+α(Ĝ)
≤ c(α, β, G) ·

(
‖w‖

Cα(Ĝ)
+ |‖w|‖β

)
.

The estimates in the proof of Lemma 3.2 yield

|‖
∫

Ĝ
∇1

r
( ·, x′)f(x′) dx′|‖β−1 ≤ c(β) · |‖f |‖β ,

|‖
∫

Ĝ
∇1

r
( ·, x′)× w(x′) dx′|‖β−1 ≤ c(β) · |‖w|‖β.

(c) From Lemma 4.4 and part (a) of the proof we arrive at

‖γ∗‖C1+α(∂G) ≤ c(α, β, G) ·
(
‖f‖

Cα(Ĝ)
+ |‖f |‖β + ‖w‖

Cα(Ĝ)
+ |‖w|‖β

+ ‖g‖C1+α(∂G) +
ñ∑

j=1

|Γj |
)
.

Finally, using Theorem 4.1 and the estimates in part (b) of the proof, we
conclude
‖v‖

C1+α(Ĝ)
+ |‖v|‖β−1 ≤ c(α, β, G) ·

(
‖f‖

Cα(Ĝ)
+ |‖f |‖β + ‖w‖

Cα(Ĝ)
+ |‖w|‖β

+ ‖g‖C1+α(∂G) +
ñ∑

j=1

|Γj |
)
. ¤
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Remark 4.1. Concerning Problem D we obtain instead of Lemma 4.4 the
integral equation

g(ξ)− Kg(ξ) =
1
2π

〈
ν(ξ),

∫
Ĝ
∇1

r
(ξ, x′) f(x′) dx′

−
∫

Ĝ
∇1

r
(ξ, x′)× w(x′) dx′ − curl

∫
∂G

1
r

(ξ, ξ′) γ∗(ξ′) dΩ′
〉
,

for ξ ∈ ∂G, where g(ξ) = 〈ν(ξ), v(ξ)〉 is the normal component of the vector
field v in ξ ∈ ∂G and

Kg(ξ) := − 1
2π

∫
∂G

〈
ν(ξ),∇1

r
(ξ, ξ′) g(ξ′)

〉
dΩ′.

The estimate corresponding to Theorem 4.2 is

‖v‖
C1+α(Ĝ)

+ |‖v|‖β−1 ≤ c(α, β, G) ·
(
‖f‖

Cα(Ĝ)
+ |‖f |‖β+

+ ‖w‖
Cα(Ĝ)

+ |‖w|‖β + ‖γ∗‖C1+α(∂G) + |E|
)
.
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