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Let us consider an incompressible viscous fluid which fills out a spatial
region  C R®. We think of a bounded connected region in R?® with diameter
d or an infinite layer of depth d. We consider a steady flow with velocity field
u, and pressure 7, under the influence of an external force F. Then Wiy T
satisfy

—vAus+u,-Vuy,+Vr, = F,
V-ou, = 0.

»

Figure 1

In the case of an infinite layer we additionally assume that u,, Vr,, F
are periodic with respect to the plane variables z,y. The plane periodicity
cell P may be, for instance, a rectangle or a hexagon. v is the kinematic
viscosity. The density p is assumed to be 1. On the values of u, on 99 or
on the top z = d/2 and the bottom z = —d/2 of the layer nothing particular
is assumed. We want to study the dynamic stability of our steady flow. A
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time-dependent disturbance under rigid boundary conditions satisfies

du—vAu+u,-Vu+u-Vu,+u-Vu+ Vr =0,
V.-u=0,

uldR =0, u=0at z=+£% resp.

u(0,x) = up(x) with ug as initial value.

(1)

(us,7,) is said to be conditionally stable with respect to (u, ) if for "small”
initial values [[ugl|zz < e the kinetic energy |[u(t)||z2 stays small for ¢ > 0
or at least becomes small for large t. (u,,w,) is said to be conditionally
asymptotically stable if for [Jug||2 < e the kinetic energy [Ju(t)||z2 tends to
0 as £ — +oo. This kind of stability is therefore a stability in the sense
of Ljapunov. The L?-norm has to be taken either over € or over the layer
Q=P x(—d/2,d/2). ¢ is called the size of the stability ball. (us,ms) is said
to be unconditionally asymptotically stable with respect to (u, ) if for any
uo the quantity ||u(¢)|z> tends to 0 as ¢ — oo.

Let us mention that in the case of an infinite layer (u, ) is also periodic
with respect to @,y and that the periodicity of u is compatible with that of
Uz,

The celebrated questions of global existence and regularity are of less/'r
interest here, since one can always work with a weak solution satisfying
Leray’s structure theorem. If the kinetic energy is known to decay then
all higher order derivatives also decay, no matter how large the initial values
are, cf. [4].

To study the stability of a steady flow there are two well-known meth-
ods at our disposal. The first one is the energy-method, first applied by
Reynolds [8] and Orr [7]. Its modernized version is due to Serrin [9]. We
take the scalar product of (1) with u. Since V-u = V-u, = 0 and u|df) = 0,
u=0at z = +d/2 resp., we obtain

%Bt|]u||2 + v||Vulf? (1 = (_—“-v_“i)) =0

v||Vul|?
where ||.|[ = ||.|[z2. Observe that u and uy are real valued. If
—u - Vu,,u
) R at!
uléﬂ .='0_0|' ¥ || vu ”

u=o at :=+¢



then

1
SOdull® +v(1 = M) Vu|* <0

and [|u(t)|* decays monotonically and exponentially to 0 if # — 4oco. In the
marginal case A* = 1 the kinetic energy is monotonically non-increasing.
Observe that for A* < 1 we thus have unconditional asymptotic stability.
The physical interpretation of (2) is that the energy the disturbance u can
draw from the steady flow is compared with the energy dissipation. Dynam-
ical constraints are not considered. In (2) the maximum is in fact assumed
since this variational problem can be put into a form which is accessible to
Courant’s method. The Euler-Lagrange system belonging to (2) is given by

3 Uy U d
(3) —uAu,--i—gL l(ukgzs;-l—uk%l‘—f:)—i-—?:o, V-u=

e

with eigenvalue parameter g and with u = (uy, us, uz)?, u, = (us, tse, ug3)L.
With gt = & and A* taken from above it is readily seen that putis the
smallest positive eigenvalue of the Euler-Lagrange system provided A+ is
positive. Setting Vv = (arkvi):ﬁ% for any vector-field v we can give to (3)

the shorter form
(4) —vAu+5(Vu,+ Vul)u + Vi =0, V-u=o.

The second method to study stability is the method of linearized stability.
We consider the spectrum of the problem

(5) {au:-vAu+u3-Vu+u-Vus+V7r,

Vou=0, uldl=0o0ru=0at z=+d/2
with o as eigenvalue-parameter. u may be complex here. This spectrum is
discrete and the eigenvalues o can be ordered according to the size of their

real parts, this is
REG’l S Re (o)) S

Thus the minimum of the real parts is assumed and we set

(6) o = min{Re o|o eigenvalue in (5)}.



First we assume that & > 0. Then the Green’s operator belonging to (1)
decays exponentially with time. By this we mean the following situation:
Let P be the orthogonal projection on the divergence-free part of (L%())>.
In particular Pu =uin (1) or (5). Since PV7 = 0 the pressure is eliminated
in (1) if we apply P. We end up with the evolution equation

Lu+ Au+ M(u) =0,
(7) Au = —vPAu + P(u,Vu + u - Vuy),
M(u) = P(u- Vu).

The operator A turns out to be the generator of an analytic semigroup e=*4
in P(L*(2))?, ¢ > 0. This is nothing else but the Green’s operator in (1) and
we have

lle”*|| < De™™, t >0,

with positive constants D,. In particular n depends on &. Now (7) can be
put into the integral form

(8) u(t) = e uy — /E_U_U)AM(U(O')) do.

Since M is quadratic in u it is easily seen from (8), that (7) has a unique,
global (in time) strong solution provided ug is small. This solution stays
small for all ¢ and even exponentially decays to 0 as t — co. Thus we
have conditional asymptotic stability if & > 0. Due to their smallness these
perturbations are called infinitesimal. As we will see later it is just the
smallness of the perturbations which causes the problems in hydrodynamic
stability.
Now we turn to the case

£o < 0.

Then the steady flow is nonlinearly unstable with respect to kinetic energy.
More precisely it was shown in [6] that there is an 9 > 0 with the following
property: For any € > 0 there is an initial value up with |[up|| < ¢ such that
the kinetic energy of the strong solution of (7) with initial value ug leaves
the eg-ball during its life-time.

The marginal case for linearized stability is therefore

o = 0.



In this case bifurcation may occur. By this we mean a branch of steady
solutions of (7). Thus visible effects in experiments can be produced as the
Taylor-vortices in the Taylor-Couette problem or patterns in the Bénard-
problem. At the first glance one may think that linearized stability is the
appropriate access to stability since it produces a necessary and sufficient
condition for stability. This method however fails to match the experiments
for some of the most studied simple steady flows. To give a deeper insight into
the problem we introduce a control-parameter, namely the Reynolds-number

(9) Re = — max |u,|.
voQ

If d, v, |u,| are endowed with dimensions, Re becomes nondimensional. After
appropriate scaling, (1) takes the non-dimensional form

du—Au+ ReU,-Vu+ Reu-VU,+u-Vu+Vr =0,
V-ou=0

with the same boundary-values as in (1) and some initial value ug. Since u, 7
and uy are also scaled we should in principle change the notation but did so
for simplicity only for the steady flow. Re is treated as a parameter we can
change at will. Now we assume that there is a one-to-one correspondence
between ut =1 in (4) and a certain value Rep of the Reynolds-number, as
well as between £ = 0 in (6) and another value Re. of the Reynolds-number.
Of course this has to be proved in any particular case. Reg is called the
energetic Reynolds-number, Re. the critical one. We also assume that for
g = 1 in (4) the Reynolds-number belonging to p is < Reg, whereas for
& < 0 in (6) the Reynolds-number Re becomes > Re.. Thus we tacitly
assume that all cases of interest in (4,5) can be characterized by appropriate
values of Re. There may be also suitable choices of Re different from (9) but
we only want to fix the ideas here. In our situation it can be shown now that
Rep < Re.. In general there is a large gap between Reg and Re,, for instance
for the simplest steady flows as plane Couette-flow Re U, = Re(—z,0,0)7 or
plane Poisenille-flow Re U, = Re(; —z%,0,0)7. In the case of plane Couette-
flow which is driven by moving the side walls relative to each other it turns
out that Reg is finite whereas Re. = +00. Thus linearized theory predicts
stability for all Reynolds-numbers. Experiments however show a subcritical
transition to turbulence of which instability is only a precursor, already for



finite Reynolds-numbers. The situation is similar for plane Poisenille-flow
although in this case Re. < +00. As reason it is generally assumed that for
Re sufficiently large the stability ball in (8) becomes so small that from the
point of view of physics only the disturbance u = 0 is admitted.

The gap between Rep and Re. is simply called the stability-problem of
hydrodynamics. The rare case that u*¥ = 1 and & = 0 occur at the same
time is characterized as follows (cf. [14]):

Theorem 1 p* =1 and & = 0 in (4f), (5) respectively occur at the same
time if and only if the eigenspaces to eigenvalues o in (5) with Reo =0 are
all contained in the eigenspace to p*t =1 in (§). Otherwise & > 0 if u* = 1.

As for examples we refer to [1, 14]. The preceding theorem thus provides a
necessary and sufficient condition that

Reg = Rec,

In this particular case the stability problem of hydrodynamics is solved com-

pletely since by passing the value Reg there is a transition from unconditional

stability to instability. In some of the examples where Rep = Re,. holds, it

is also possible to single out the most energetic perturbation. This is the

perturbation which leaves the range of monotonic energy stability at earli-

est possibility and becomes unstable afterwards, for instance at miﬁn Reg in
a,

an infinite layer where the minimum has to be taken over all wave-numbers
a,f in z,y-direction respectively. Cf. [1, 14] and in particular [2]. These
perturbations can use the energy of the steady flow or the initial velocity in
an optimal way. In general one can say that in linearized stability the cases
§o = 0 and & < 0 are of paticular importance.

There are however experiments, known since long, which show a perfect
coincidence with the stability bounds given by linearized theory. This is so
even if the gap between Rep and Re, may become very large. An example is
the case of two rotating coaxial cylinders with a viscous incompressible fluid



between them. z

Figure 2

2 is the angular velocity of the interior cylinder, R, its radius, whereas 0,
is the angular velocity of the exterior one and R; its radius. The cylinders
are considered to be sufficiently long. Therefore disturbances from the ends
of the cylinders can be neglected. The quantity

(IZRQ—R|

is called the gap between the cylinders. The basic flow uy, 7, to be perturbed
is a solution of the steady Navier-Stokes equation and is driven by the moving
cylinder mantles to which it sticks. Introducing cylindrical coordinates about
the axis of rotation as indicated in figure 2 we find

u; = vg(s)e,, F = gravity,

Ty, = mo(s) — gz + const.

for the basic flow with

B
UO(S) = As+ R

S

g BB RRNO, - )
R} — R} Ry - Rt

The basic flow is thus axisymmetric. If it is perturbed by axisymmetric dis-
turbances criticality is reached if the relative velocity |Av| = |0, — | Bl



between the cylinder mantles is increased sufficiently. We assume from now
on that

(10) d

Qy — O
Ry + Ry Q2 +
which condition we call the small-gap limit. Below criticality no effects are
observed whereas at criticality steady bifurcation sets in and produces the
well known Taylor vortices. Pictures of this phenomenon can be found in
many books on fluid dynamics.

<<1,‘ << 1
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Figure 3

This coincidence of experimental results with the bounds predicted by lin-
earized stability is explained completely in a strict mathematical sense in a
forthcoming paper by R. Kaiser and the author (cf. [5]). In what follows we
briefly sketch the mathematical part of this paper. The basic idea consists in
showing that in our case unconditional stability up to criticality takes place.
It was suggested by previous studies of Busse [3].

——=

Figure 4



Since the basic flow is axisymmetric it is also a steady solution of the Navier-
Stokes system with respect to a rotating cylindrical coordinate system with
the z-axis as axis of rotation. This rotating frame is shifted to the middle
between the cylinders and then replaced by a cartesian one. This turns out
to be admissible at least for axisymmetric perturbations. On using (10) the
basic flow is approximated and finally an appropriate scaling is introduced.
The axisymmetric disturbances in this new setting are just the x-independent
ones. On introducing the quantities

d2

Q= (@t 0), 2=9)
Re = d | — Q4] RQ+RI- = Reynolds-number
v s

the problem in question is now mapped onto the equivalent stability problem
for plane Couette-flow ReU, = Re(—z,0,0)T in an infinite rotating layer

—3 < z < 1 with aximutal axis of rotation €j. It is governed by the system

Ju—Au+ ReU,;-Vu+ Reu-VU, +u-Vu+
(11) +202 xu+ Vr =0,

V:u=0,u=0atz =i%v u([),:!:,y,z):uo(a:,y,z)

which we have written down in its 3D-form. u is periodic in the plane di-
rections with wave-numbers a,  in @, y-direction respectively. The axisym-
metric perturbations in the original-problem are the z-independent ones in
(11).

For a detailed analytical study of (11) we have to make full use of the
underlying geometry when eliminating the pressure and exploiting the
structure of the nonlinearity. The projection P, already introduced in con-
nection with (7), is not suitable for this purpose. Instead of using P we
decompose any x, y-periodic solenoidal vector field u in the layer as follows
(cf. [10]):

u = curl curl gk + curl ¥k + f.

©, % are periodic functions having vanishing mean value over the plane peri-
odicity cell P. f is a vector field which depends on z only and has constant
third component fs. f3 vanishes if u =0 at z = :I:%. curl curl ¢k is called
the poloidal part of u, curl ¢’k is the toroidal one and f is called the mean



flow. We set Ay = 9? + d; for the plane Laplacian and obtain
8¢ := curl curl pk = (8,200, 0,200, (—A2)p)7,
ey 1= curl ok = (O, —0,7p, O)T.

6-, e- are used as vectorial operators too. For instance, let v be a vector field.
Then we set 6 - v = 0,01 4+ 0y.v, + (—A2)v3 and define € - v correspondingly.
This decomposition was already used by Joseph and, mainly, by Busse but
these authors omit f. f however is needed since for f = 0 we only obtain
the solenoidal vector fields having vanishing mean value over P. The last
property however is not invariant under Re U, - Vu + Reu - VU, 4+ u - Vu
and therefore these vector fields cannot serve as solutions of (11) in general.
If LS denotes the left-hand side in (11) we form (curl curl £5,k), (curl
LS, k) and end up with a system of higher order for the unknown vector
® = (,%, f1, f2)T where f = (f1, f2,0)7. This system takes the form (1 =
bp + ev))

[ (—A)(=22)dp + A (=As)p — 2(=25)Q0y1p + 6 - (u - Vu) = 0,

(=A2)0p + (—A)(—A2)) — Re(—9,)(—Az)p+
20(=09,)(=Az)p —e - (u-Vu) =0,

(12)
Ofr + (=02 i + g [(0- V), da dy =0,
T
hfr+ (=03 f2 + ﬁf(ﬁ -Vu),dzdy =0
bl
in the axisymmetric case, this is d,. = 0. The pressure is eliminated and

the system (12) is almost local, with the exception of two mean values in
the subsystem for the mean flow. This is quite in contrast to (7) since P
there is a non-local operator. For this material we refer to [10, 5] and [14,
pp- 119,120]. The system in question thus has the structure

(13)  9BO+ AD +CP + M(D,, d) + M(D,D,) + M(d,d) = 0

for the unknown vector-field ®(t) = (¢(t),%(t), fi(t), f2(t))T. B, A are op-
erators of higher order, M is a bilinear nonlinearity and C® stands for the
Coriolis-term. ®, is the steady flow whose stability has to be studied. The
boundary values are

p=0p=0at z=+3, h=0at z=+2,

(14) ,
fi=fa=0at z=+1.
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In the general 3D-case we look for a solution ® of (13) which is periodic in the

x, y-directions with wave numbers a, 8. If any f € L*((=Z,Z) x (=%, %) %

o’ o
(—%, %)) is expanded into a Fourier-series with respect to the plane variables
we obtain

(15) f(:v,y,z) = Z a"—(z) eiﬂfﬁ]r+iﬁ-c2y

2r | 27
KEZ? P]

for almost all z € (—1, 1), and Levi’s theorem shows that

It is now easy to see that B, A act as positive definite selfadjoint operators on
the x, y-periodic vector-fields. For instance, if we take p = f from the closed
subspace L},(2) of L?(Q), consisting of all functions having vanishing mean
value over (=%, %) x (=3, %), then ap = 0 in (15) and A*(—A;) becomes a
strictly positive definite selfadjoint operator when defined on all f as in (15)
with

L1 1
GNGFI‘L‘Z( _515))1 ar":azaﬁzoa't z::taa H%D,
+
Z (o®k? + B2k2)? / (=02 + a*k} + B*k2)%ax|* dz < +co.
r€Z?-{0} B

=

Also —A; becomes a strictly positive definite selfadjoint operator in L2,(£2)
when defined in an obvious way. It is now natural to seek a solution of (13)
within the class

9@ € L*(0,T),D(B)),
® e L*(0,T),D(A))NC0,T],J)

where J is an appropriate interpolation space between D(B) and D(A). In
our case, this is d,® = 0, this solution exists for all 7" > 0. We refer to
(12, 13] for this material.
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On returning to our original problem (12) with d,. = 0 it is readily seen
that Rep and Re, are most efficiently computed when using the poloidal-
, toroidal-, mean-flow language. To describe the result we introduce an
auxiliary function which stems from the Bénard-problem when disturbing
the motionless state under rigid boundary-conditions. In dependence of the
wave-number /3 in y-direction the function in question separates monotonic
energy stability from instability (Theorem 1 here applies!). We denote this
function by Rmin(/3?%). It marks therefore the critical Rayleigh-number against
2D-disturbances in the Bénard-problem and looks as follows (cf. [11]):

A Roni (B2
4107.762=R,
o L'
74 = -
P=3.m1 $
Figure 5
The minimal value R, = 1708 is assumed infinitely many times. For the

energetic Reynolds-number Reg in the Taylor-Couette-problem one obtains

Rep = Rep(*) = 20/ Beain 52).

To fix the ideas let us assume that Q = g(ﬂl + Q) > 0, Re # 2Q. Then we

obtain B ([3’2)
Re. — 9 min
e, Q+ —

for the critical Reynolds-number. Now we can compare Re. and Reg. If 3



is fixed the situation looks as follows:

Re A

[

min

Figure 6

Reg is just the minimal value of Re, = Re.(Q). It is assumed for Qu;, =

% Ruin(?). Thus Rep = 4Qmin. This is an example in the spirit of Theorem
1 and was found first by Busse [1]. As it follows from Theorem 1 it is
the only one amongst all 3D disturbances and all plane parallel shear flows
(f(2),0,0)" with general profile f and axis of rotation = Q3 (Cf. [14]).

For this reason there is necessarily a gap between Re. and Reg if @ # Qi
as can be seen from the figure above. By inserting suitable testing vectors

into some weak form of (12) we see that the functional

F(t) = V(=2 z0()| + || 208)]1*+

16
o + ez - (100 (N + 1LAG]?)
exhibits unconditional stability for Re < Re.. F is then monotonically and
exponentially decaying for ¢ > 0. If Re = Re., F is monotonically non-
increasing. F is equivalent to the kinetic energy and equals it in the excep-
tional case Re = 4Q. If Q < 0 the functional in question stays the same one
but if 2Q(Re — 2Q2) = 0 we have to choose a different one. We refer to [5].
Let us now consider the nonlinear steady problem which belongs to (12).

We set 9 = 2Q0,v, fl 2Qf1, f2 fa, f= (fl,fg) and then this problem

13



becomes ((—A;) = —32) :

[ AY(=As)p — (D)9 + 8- (60 +1) - Vo) +
ay:((_ai@)azh) =0,
(—A)Y — 20 Re — 2Q)(=Ay)p + 6 - ViI—

%/

I¢] . a
(17) \ = [ 8¢ -Vidy+ 20,9 + (=A2)p0.fi = 0,
_-;1-/,'3
(—)fi + b [ b+ Vi dr dy =0,
T

(=) f + ﬁ’ﬁf’&'& -Va,.odxdy =0.

\

Thus (17) is a nonlinear eigenvalue-problem and
R = 2Q(Re — 2Q)

serves as eigenvalue parameter. Criticality precisely means that R = Ry,(/3%),
where Ryin(?) is the curve from figure 5. Let us now place ourselves in the
vicinity of a minimum of this curve, say around 5. = 3.117, R. = 1707.762.

Around (3., R.) the eigenvalues R = Rpyin(/3?) of the linear problem belong-

ing to (17) turn out to be algebraically simple if one takes into consideration

only vectors which are even with respect to y, this is: Only cos-terms ap-

pear in the Fourier-expansions (15) for ¢,9. Therefore we obtain a branch

(<i> = (g, 9, f,,fg), R) of solutions of (17) which can be given in terms of an

expansion

(18) b=3"e"d,, R=) c"R,, |¢| < e,
v=1 v=0

with Hilbert-space valued coefficients @l:), = &3,,([3), ®, # 0, and real coeffi-
cients R, = R,(8), Ro = Ro() = Rumin(S?). The unconditional asymptotic
stability up to criticality, expressed by the functional F in (16), shows that
Ry = 0. Namely, if Ry # 0 we obtain for small |¢| a nonvanishing solution
of (17) for R < Ruin(f3*). Retransforming d by setting ¥ = %(—Az)‘layﬂ,
Ffi = ﬁfl we arrive at a steady nonvanishing solution of (12) strictly below
criticality. Taking this solution as initial value in (12) we end up with a
contradiction since F(¢) — 0, t — oo, implies that ® = 0. The stable ones
amongst the solutions (®, R) may be seen as Taylor-vortices as indicated in
figure 3. In pnrticu]ar/the (®, R) branch off to the right.

14
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Our previous example, the Taylor-Couette-problem in the small-gap limit
under axisymmetric perturbations, shows that Rep < Re. even if the bifurca-
tion takes place in the direction of growing Reynolds-numbers. The stability
behaviour however of the basic flow below criticality may be improved by this
fact. This is seen as follows: If we think of a branch like (18) with Ry # 0
then we have a subcritical bifurcation. This in particular means that close
to criticality the stability ball in (7) becomes smaller than the (small) size
of the steady solutions on the branch for small |¢|. Otherwise one would be
able to outrule Ry # 0 by taking the steady flows on the branch as initial
values in (7) as before. An analytical treatment of this question seems to be
difficult.
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