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In the present paper we prove C“-estimates for Vu using components of boundary values of u, div u, curl u
and quantities given by components of boundary values of u as well as boundary values of elements
belonging to de Rhams cohomology modules. The vector field u is defined on a bounded set G = R?,
meanwhile the cohomology group will be defined with regard to R* — G. Our inequalities turn out to be
a priori estimates concerning well-known boundary value problems for vector fields. © 1997 by B. G.
Teubner Stuttgart—John Wiley & Sons, Ltd.
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1. Introduction

Let us consider a vector field u: G —» R>. Here G is a bounded open set of R? with
a smooth boundary 0G and an outward normal v. In [7] the second author has
studied the problem, whether Vu can always be estimated by div u and curl u provided
that one of the quantities (v, u) or v x u vanishes on 0G. The result is that such an
estimate is possible for all u if and only if the first Betti number of G, respectively, the
second one vanishes. The underlying space was L?(G).

In the present paper we want to generalize this result. The set G may have arbitrary
finite first or second Betti number. Neither (v, u) nor v x u is required to vanish on 8G.
In this case we expect that for an estimate of Vu in addition to div u and curl u at least
one of the quantities (v, u) or v x u is needed. Obviously, we also need a quantity which
reflects the topological structure of G. If we estimate Vu by div u, curl u and v x u, this is

Y |E;l, m=second Betti number of G.

i=1

Here E; is the flux f, 6~ (v, u) dQ of u with regard to 8G;, and G; in one of the bounded
arcwise connected components of G = R* — G,i = 1, ... ,m. Ifin contrast we want to
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738 J. Bolik and W. von Wahl

estimate Vu by div u, curl u and (v, u), there arises due to the topology

M=

|T¥|, n = first Betti number of G,

i=1

as additional quantity needed. Here we define I'? as foc( — (vxu), 2hdQ,i=1, ...,n
The first Betti number n is the number of handles of G, and, according to Alexander’s
duality theorem, it is also the number of handles of G. Moreover, n simultaneously
denotes the dimension of the Neumann fields on G as well as on G. The functions
2!, ..., 3" form a basis of the Neumann fields on G (cf. section 3). It can be shown that
in particular cases the quantities I'* are nothing else but circulations of u concerning
boundary curves around the handles of G (cf. the remark in the end). Nevertheless, we
shall always refer to I' as circulations. As underlying space we choose C*(G), a€(0, 1).
This is conceptually easier to tackle than to use L?(G), since we do not have to deal

with trace spaces on 0G. The estimates we are going to prove are

| Vallcs@y < (Il div ulleg) + [l curl u|lc@) +

+ | vxa|cresee + Z | E;]), (1.1)
i=1

i

| Valle@y < c(lldiv uflcsg) + || curl u| @y +
+ (W) eeeey + 3 ITH), weC'*%(G). (1.2)
i=1

If m = 0 or n = 0, the corresponding sums have to be set equal to 0. Thus, from (1.1,
1.2) there arise the estimates in [7] in the C*-case with a given bounded domain' as
well as the estimate

lullc«@ < c(lldivuleg + [cutlufeg))

for u|ze =0.

It may be attractive to compare our conclusion with the general results about
differential forms on compact Riemannian manifolds .# with boundary, as treated in
chapter 7 of the book [4] by Morrey and in the recent monograph [5] by Schwarz.
According to the theorems 7.7.4, 7.7.7 and 7.7.8 in [4], for any differential form w on
M of class C'** there exist differential form y, ¢ and & such that

w=7+¢+h where yelmd, celmd and dh =8h =0. (1.3)
Following the reasoning in [5, Lemma 2.4.10], the inequalities
[7llc+ S clldw | ¢- and |[e e < cl| S| c- (L4)

are provable. These estimates cannot be found in [4] and need an additional effort.
We decompose h into its L2-projection onto the space

Nz

#~ = {he C*(M)|dh = 8h = 0, with tangential part th=0}

*In [7] also the case of an unbounded domain was treated with LP-spaces, 1 <p < 3.
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called h~, and its orthogonal complement called h;. Provided that suitable regularity
properties exist, we obtain by basic results of tensor analysis the estimates

[h™ llcive < | VR {lcrveeuy and | hsllcie= < cllhs |l o+ (1.5)

where vh™ stands for the normal part of 2~. Now we turn to our particular situation,
ie. to # = G < R? and the estimate (1.1). By 0G4, ... ,98G,, we denote a basis of the
second homology group concerning G. The de Rham isomorphism theorem yields the
existence of a basis hy, ..., h, of #~ dual to 0G,, ...,0G,,. For the accompanying
vector fields h;, we therefore obtain

f h;dQ = &} (1.6)
3G,

Now we insert this into our previous estimates. We need an estimate for the coeffi-
cients 4; in

h— = Alhl + b + /lmhm
by the fluxes of u and at least an estimate
[ thllcr+@e) < ¢l v X ul[citepe).

As will be taken from [5, p. 88], the latter inequality remains to be seen. These
differences to our conception are not surprising, since our decomposition is different
from (1.3). It is neither orthogonal nor can a harmonic field be isolated in an obvious
way. On the other hand, compared with the abstract access (1.3), it provides a more
concrete analytical insight.

To begin with, we want to make some general remarks and present some funda-
mental results:

s

G= Gi=

1

il

13

bounded open set of R* with arcwise connected components G;.

Here 1 denotes the second Betti number of G.

Each 8G; has a finite number of closed surfaces as arcwise connected components.
They are assumed to be of class C*.

Furthermore, G;NG; = @ if i # j.

G= R3 _G—= U GiUGm+1
i=1

with G; bounded, G,,, , unbounded. In addition GimGj =Qifi##]
Thus, 0G; has the same properties as 0G;.

Let u:G—R3 be of class C1**(G) for ae(0,1), and &¢:=divua y:=curlu,
e*:= — (v,u), y*:= — (vxu). The fundamental theorem of vector analysis provides
the representation

u= —grad U + curl A with
1 1
U=L —gdx +— 1s*’dQ’,
4 T 4r g T
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1 1 1 1
A=— 1 —ydx' +—| —-y¥dQ,
4x Gry x+47'(_[a(;r’y
divA =0, r=|x— x'| for the volume integrals and

r=|x—¢'|, &edG for the boundary integrals.

1
Moreover, v := f - &¥ dQ)’ solves the Neumann problem
°G

Av=0 in(_;with@=g,
ov

1

&% — Ke* = 1 g, where (Ke*) (&) := — — f <g 1) (&, ENe*(E7)dQ.
2n 27 Jog \OV F

Employing the well-known estimates for elliptic equations [1, 8], we obtain
1D, <cll g lct+ee)-
Thus, by [2] there arises
ID*v]l, < clle* llcrve)-
: 1 ; .
Since the components of w := J - y* dQ' are single layer potentials, we conclude that
3G
ID?*w . < |l 7* llcie-
Using the well-known results for volume potentials, we arrive at
IVall, <c(llella + 17 1la + 1 €* lcrrepe + 17* ll cr+400)- (1.7)

The objective is now to replace |&*[ici-oq by fluxes of w or [[y*|ci+xpq by
circulations of u. The number of fluxes employed is m (none if m = 0), and the number
of circulations is n (none if n = 0).

Besides the operator K, which has already been introduced, we need its dual in
L*(@G). This is

wie1= 5| (1)@ rmeraa
T Jog \OV' 7

The operator L belongs to the Dirichlet problem, I + L is the Dirichlet integral
operator for the interior problem, I — L is the corresponding one for the exterior
problem.

Moreover, 4" denotes the null space of a linear operator, and Z is its range.

2. Estimates using the fluxes of u

We are going to prove

Theorem 2.1 Let ue C**%(G) for ae(0,1) and m > 1. We set

E,~:=JA e*dQ, 1<i<mand (2.1)
36,
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e:=div u, y:= curl u as well as y* := — (vxu). Then the estimate

IVulle < C<“8|la +lyla+ 17*lcvee + X |Ei|> (2.2)

i=1

is valid with some constant ¢ = c(a, G).

Proof. According to [6, pp. 114-116], the quantity ¢* satisfies the integral equation
1
* 4 Ke* = — | 2
e + Ke* =3-g (23)

on 0G, together with the side conditions (2.1). For g we have

(&) = (v(©), <grad J ] 87 dx’) @) — (curl ( f ] “’7 dx’ + LG 77 dQ’)) ).

In particular, we obtain

lgllcee <clllele+ 17+ 17* 1 ct+@a)

The operator I + K is the Neumann integral operator on 0G = 9G for the exterior
Neumann problem on G. A basis of A4°(I + L) is given by (cf. [6, pp. 63-69])

Ri|ee, with Ai(x) =1, xeG;, R(x)=0 xeG—-G, 1<i<m.

We find a basis {h,, ..., b, } of /(1 + K) which is dual to {h'|a, ..., A"|sc} (cf. [6,
Theorem 1.2.4]). According to [2, cf. also 8], the operator K boundedly maps C*(0G)
into C!**(0G) and C'**(dG) into C?**(dG). (2.3) is now considered in C! **(dG). Let
us attend to

f+Kf=h,fAfdQ=E,-, 1<ism (2.4)
oG,

if h belongs to the closed subspace Z(I + K) of C'**(0G). The problem (2.4) has one
and only one solution fin C* **(0G). The function f allows the decomposition

f=fo+h,

with

fo=Jo(Ers o En)i= Y Ehe #(I + K),
i=1

f,eC**@G), f, + Kfi =h, féfldsz=o, 1<i<m
oG,

Obviously, f, and f; are uniquely determined. Arguing as usually by contradiction, we
obtain that there exists a constant d > 0 such that

I+ K) f1 | cr+pa 2 d || fi | cr+6)-

Thus, we infer that
= 1
I fllcrveey S € Y Es| + ] A1l ¢t
i=1

This completes the proof. O
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In the case that m = 0, the problem is less complicated since the space A4°(I + K)
consists only of {0}. The resulting estimate then is

IVulla <c(llella + 17 la+ 17*] ¢ +0a), 2.5)

as be clearly seen from the preceding considerations.

3. Estimates using the circulations of u

We are going to prove

Theorem 3.1. Let ue C1*%(G) for ae(0, 1). Furthermore, we confine ourselves to the
case that the first Betti number be n > 1. Elements of the spaces

Z(G):= {ze CHG)NC?(G), pe(0,1)|divz =0, curlz=0, (v,z) =0},

Z(6):= {zeC‘(G)mC"(é), pe(0,1)|divz =0, curlz =0,

12 =0, lz()| = 0 (i> x| —»oo}
X

will be called Neumann fields in G and G, respectively. We set

.= f (* 2)dQ, 1<i<n, {2% <<, basis of Z(G) and 3.1
oG
g:=divu,y:=curlu as well as ¢* := — (v,u). Then the estimate
Vall, < C(llslla +lyla+ le*lorvee + 2 IF"|> (32)
i=1

is valid with some constant ¢ = c(a, G).
Proof. By means of
Te(0G) = {y* € C+*(8G) | (+(&), 7*(&) = OV E€DGY,

keNy, ae[0,1) equipped with the norms | - || ¢++«pg, We obtain Banach spaces.
Moreover, a linear operator

R:Jc(0G) - I0(0G), Ry*:= 2—17t LG (v( -} x curl l?’*‘(?& dQy’

will be given. With regard to the set J¢.(0G), we deduce

RP'O = —5 j <§1>(£, £)y+(E)deY +
T Jog vr

#or [ e @000, En a0
T JoG r
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(cf. [6, p. 137]). Henceforth, we choose o€ (0, 1). The vector y* := — (v x u) belongs to
J:+(0G) and satisfies the integral equation

(I + Ryy*(®) = 51; £(¢) with £€dG and

f(&):=v(E) x [(grad( J B—, dx’ + J Ei dQ’)) (4] —<curl J y—l dx’) (é):l
G’ G T T

(cf. [6, p. 126]). As in section 2, we obtain

| £1 c e S c(llella +Hyla+ le*] c‘“(ac))-

The Riesz number of R is 1 [6, p. 152]. Using [6, p. 139, p. 150, p. 141], we therefore
realize that there exists a basis {y¥, ... ,7¥} of /(I + R) with

f (v¥,29dQ =&
3G

(cf. [6, p. 147]). For each he Z(I + R) = C'**(dG) we find a uniquely determined
solution ge C* **(8G) of the problem

'(I+R)g=hLG(g, #HdQ =T, 1<i<n (3.3)
Moreover, there exists a unique solution g; € C! **(dG) of

(I + R)g; =h, LG(gl, #)dQ =0, 1<i<n (34
We define

go =go(T, ..., T := Y iyt
i=1

Consequently, g, is an element of #"(I + R). Altogether, each solution g of (3.3) may
uniquely be decomposed into g, and g;:

g=20 + 8-

We take from [2, 8] that R| i+« is @ compact operator in J¢:+(8G). Therefore,
(I + R)| ¢++@) is a Fredholm operator and Z(I + R)] ¢i+g is closed. Furthermore,
I + R maps Z¢:+(0G)\\A"(I + R) into Z¢:+(0G). The restriction to the image of this
operator constitutes a homeomorphic mapping. As the solution g, of (3.4) belongs to
Z(I + R)| ¢++0c)» We obtain, according to Banach’s open mapping theorem, the
estimate

dllg:ll civaee < U + R)g1 | cr++p6)

with a constant d > 0, and thus

n X 1
I gl cireea) < € Z [T + 7 [hl ci+epe)-
i=1
Hence Theorem 3.1 is proved. 0
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In the case that n = 0, the space 4"(I + R) consists only of {0}. Consequently, we
then get

[Val, <clllella + [171la + 6% Il ¢t vsea)- (3.5)

Remark. Let {¢*, ... ,é"} be a basis of the first homology group with regard to G.
This basis is given by closed curves around the handles of G. For each &' we denote by
{ the corresponding unit tangent vector. Provided

(v, curlu) = 0,

we take from [3, p. 72] that

f (y*,z")dg=f G,uds, i=1,..,n (3.6)
oG &

Then the T, (i = 1, ... ,n) are equal to conventional circulations.
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