Estimating ∇u in terms of div u, curl u, either (v, u) or $v \times u$ and the topology

Jürgen Bolik and Wolf von Wahl*

Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

Communicated by E. Meister

In the present paper we prove C^* -estimates for ∇u using components of boundary values of u, div u, curl u and quantities given by components of boundary values of u as well as boundary values of elements belonging to de Rhams cohomology modules. The vector field u is defined on a bounded set $\overline{G} \subset \mathbb{R}^3$, meanwhile the cohomology group will be defined with regard to $\mathbb{R}^3 - G$. Our inequalities turn out to be a priori estimates concerning well-known boundary value problems for vector fields. © 1997 by B. G. Teubner Stuttgart-John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci., Vol. 20, 737-744 (1997). (No. of Figures: 0 No. of Tables: 0 No. of Refs: 8)

1. Introduction

Let us consider a vector field $\mathbf{u}: \overline{G} \to \mathbb{R}^3$. Here G is a bounded open set of \mathbb{R}^3 with a smooth boundary ∂G and an outward normal v. In [7] the second author has studied the problem, whether $\nabla \mathbf{u}$ can always be estimated by div \mathbf{u} and curl \mathbf{u} provided that one of the quantities (v, \mathbf{u}) or $v \times \mathbf{u}$ vanishes on ∂G . The result is that such an estimate is possible for all \mathbf{u} if and only if the first Betti number of G, respectively, the second one vanishes. The underlying space was $L^p(G)$.

In the present paper we want to generalize this result. The set G may have arbitrary finite first or second Betti number. Neither (v, \mathbf{u}) nor $v \times \mathbf{u}$ is required to vanish on ∂G . In this case we expect that for an estimate of $\nabla \mathbf{u}$ in addition to div \mathbf{u} and curl \mathbf{u} at least one of the quantities (v, \mathbf{u}) or $v \times \mathbf{u}$ is needed. Obviously, we also need a quantity which reflects the topological structure of G. If we estimate $\nabla \mathbf{u}$ by div \mathbf{u} , curl \mathbf{u} and $v \times \mathbf{u}$, this is

$$\sum_{i=1}^{m} |E_i|, \quad m = \text{second Betti number of } G.$$

Here E_i is the flux $\int_{\partial G_i} -(\nu, \mathbf{u}) d\Omega$ of \mathbf{u} with regard to $\partial \widehat{G}_i$, and \widehat{G}_i in one of the bounded arcwise connected components of $\widehat{G} = \mathbb{R}^3 - \overline{G}$, i = 1, ..., m. If in contrast we want to

^{*} Correspondence to W. von Wahl

estimate $\nabla \mathbf{u}$ by div \mathbf{u} , curl \mathbf{u} and (v, \mathbf{u}) , there arises due to the topology

$$\sum_{i=1}^{n} |\Gamma^{i}|, \quad n = \text{first Betti number of } G,$$

as additional quantity needed. Here we define Γ^i as $\int_{\partial G} (-(v \times \mathbf{u}), \hat{\mathbf{z}}^i) d\Omega$, $i = 1, \ldots, n$. The first Betti number n is the number of handles of G, and, according to Alexander's duality theorem, it is also the number of handles of G. Moreover, n simultaneously denotes the dimension of the Neumann fields on G as well as on G. The functions $\hat{\mathbf{z}}^1, \ldots, \hat{\mathbf{z}}^n$ form a basis of the Neumann fields on G (cf. section 3). It can be shown that in particular cases the quantities Γ^i are nothing else but circulations of \mathbf{u} concerning boundary curves around the handles of G (cf. the remark in the end). Nevertheless, we shall always refer to Γ^i as circulations. As underlying space we choose $C^{\alpha}(G)$, $\alpha \in (0, 1)$. This is conceptually easier to tackle than to use $L^p(G)$, since we do not have to deal with trace spaces on ∂G . The estimates we are going to prove are

$$\| \nabla \mathbf{u} \|_{C^{*}(\bar{G})} \leq c (\| \operatorname{div} \mathbf{u} \|_{C^{*}(\bar{G})} + \| \operatorname{curl} \mathbf{u} \|_{C^{*}(\bar{G})} +$$

$$+ \| v \times \mathbf{u} \|_{C^{1+2}(\bar{G}G)} + \sum_{i=1}^{m} |E_{i}|,$$

$$(1.1)$$

 $\|\nabla \mathbf{u}\|_{C^{\alpha}(\bar{G})} \le c(\|\operatorname{div} \mathbf{u}\|_{C^{\alpha}(\bar{G})} + \|\operatorname{curl} \mathbf{u}\|_{C^{\alpha}(\bar{G})} +$

+
$$\| (v, \mathbf{u}) \|_{C^{1+\alpha}(\partial G)} + \sum_{i=1}^{n} |\Gamma^{i}|, \quad \mathbf{u} \in C^{1+\alpha}(\overline{G}).$$
 (1.2)

If m = 0 or n = 0, the corresponding sums have to be set equal to 0. Thus, from (1.1, 1.2) there arise the estimates in [7] in the C^{α} -case with a given bounded domain[†] as well as the estimate

$$\|\mathbf{u}\|_{C^{1+\alpha}(\bar{G})} \le c(\|\operatorname{div}\mathbf{u}\|_{C^{\alpha}(\bar{G})} + \|\operatorname{curl}\mathbf{u}\|_{C^{\alpha}(\bar{G})})$$

for $u|_{\partial G} = 0$.

It may be attractive to compare our conclusion with the general results about differential forms on compact Riemannian manifolds \mathcal{M} with boundary, as treated in chapter 7 of the book [4] by Morrey and in the recent monograph [5] by Schwarz. According to the theorems 7.7.4, 7.7.7 and 7.7.8 in [4], for any differential form ω on \mathcal{M} of class $C^{1+\alpha}$ there exist differential form γ , ε and h such that

$$\omega = \gamma + \varepsilon + h$$
, where $\gamma \in \text{Im } \delta$, $\varepsilon \in \text{Im } d$ and $dh = \delta h = 0$. (1.3)

Following the reasoning in [5, Lemma 2.4.10], the inequalities

$$\|\gamma\|_{C^{1+\alpha}} \le c \|d\omega\|_{C^{\alpha}} \text{ and } \|\varepsilon\|_{C^{1+\alpha}} \le c \|\delta\omega\|_{C^{\alpha}}$$
 (1.4)

are provable. These estimates cannot be found in [4] and need an additional effort. We decompose h into its L^2 -projection onto the space

$$\mathcal{H}^- := \overline{\{h \in C^\infty(\mathcal{M}) | dh = \delta h = 0, \text{ with tangential part } \tau h = 0\}}^{\|\cdot\|_{L^2}},$$

[†]In [7] also the case of an unbounded domain was treated with L^p -spaces, 1 .

called h^- , and its orthogonal complement called h_δ . Provided that suitable regularity properties exist, we obtain by basic results of tensor analysis the estimates

$$\|h^{-}\|_{C^{1+\epsilon}} \leq c \|vh^{-}\|_{C^{1+\epsilon}(\partial \mathcal{M})} \text{ and } \|h_{\delta}\|_{C^{1+\epsilon}} \leq c \|h_{\delta}\|_{C^{1+\epsilon}(\partial \mathcal{M})}, \tag{1.5}$$

where vh^- stands for the normal part of h^- . Now we turn to our particular situation, i.e. to $\mathcal{M} = \overline{G} \subset \mathbb{R}^3$ and the estimate (1.1). By $\partial G_1, \ldots, \partial G_m$ we denote a basis of the second homology group concerning \overline{G} . The de Rham isomorphism theorem yields the existence of a basis h_1, \ldots, h_m of \mathcal{H}^- dual to $\partial G_1, \ldots, \partial G_m$. For the accompanying vector fields h_i , we therefore obtain

$$\int_{\partial G_i} h_i \, \mathrm{d}\mathbf{\Omega} = \delta_i^j. \tag{1.6}$$

Now we insert this into our previous estimates. We need an estimate for the coefficients λ_i in

$$h^- = \lambda_1 h_1 + \cdots + \lambda_m h_m$$

by the fluxes of u and at least an estimate

$$\|\tau h\|_{C^{1+\alpha}(\partial G)} \leqslant c \|v \times \mathbf{u}\|_{C^{1+\alpha}(\partial G)}.$$

As will be taken from [5, p. 88], the latter inequality remains to be seen. These differences to our conception are not surprising, since our decomposition is different from (1.3). It is neither orthogonal nor can a harmonic field be isolated in an obvious way. On the other hand, compared with the abstract access (1.3), it provides a more concrete analytical insight.

To begin with, we want to make some general remarks and present some fundamental results:

$$G = \bigcup_{i=1}^{\hat{m}} G_i =$$

bounded open set of \mathbb{R}^3 with arcwise connected components G_i .

Here \hat{m} denotes the second Betti number of \hat{G} .

Each ∂G_i has a finite number of closed surfaces as arcwise connected components. They are assumed to be of class C^{∞} .

Furthermore, $\bar{G}_i \cap \bar{G}_i = \emptyset$ if $i \neq j$.

$$\hat{G} = \mathbb{R}^3 - \bar{G} = \bigcup_{i=1}^m \hat{G}_i \cup \hat{G}_{m+1}$$

with \hat{G}_i bounded, \hat{G}_{m+1} unbounded. In addition $\bar{\hat{G}}_i \cap \bar{\hat{G}}_j = \emptyset$ if $i \neq j$.

Thus, $\partial \hat{G}_i$ has the same properties as ∂G_i .

Let $\mathbf{u}: \overline{G} \to \mathbb{R}^3$ be of class $C^{1+\alpha}(\overline{G})$ for $\alpha \in (0, 1)$, and $\varepsilon := \operatorname{div} \mathbf{u}$ $\gamma := \operatorname{curl} \mathbf{u}$, $\varepsilon^* := -(\nu, \mathbf{u})$, $\gamma^* := -(\nu \times \mathbf{u})$. The fundamental theorem of vector analysis provides the representation

$$\mathbf{u} = -\operatorname{grad} U + \operatorname{curl} \mathbf{A}$$
 with

$$U = \frac{1}{4\pi} \int_{C} \frac{1}{r} \varepsilon' dx' + \frac{1}{4\pi} \int_{\partial C} \frac{1}{r} \varepsilon^{*'} d\Omega',$$

$$\mathbf{A} = \frac{1}{4\pi} \int_{G} \frac{1}{r} \gamma' \, \mathrm{d}x' + \frac{1}{4\pi} \int_{\partial G} \frac{1}{r} \gamma^{*'} \, \mathrm{d}\Omega',$$

div A = 0, r = |x - x'| for the volume integrals and

 $r = |x - \xi'|, \quad \xi' \in \partial G$ for the boundary integrals.

Moreover, $v := \int_{\partial G} \frac{1}{r} \varepsilon^{*'} d\Omega'$ solves the Neumann problem

$$\Delta v = 0$$
 in \bar{G} with $\frac{\partial v}{\partial v} = g$,

$$\varepsilon^* - K\varepsilon^* = \frac{1}{2\pi} g$$
, where $(K\varepsilon^*)(\xi) := -\frac{1}{2\pi} \int_{\partial G} \left(\frac{\partial}{\partial v} \frac{1}{r}\right) (\xi, \xi') \varepsilon^*(\xi') d\Omega'$.

Employing the well-known estimates for elliptic equations [1, 8], we obtain

$$||D^2v||_{\alpha} \leq c ||g||_{C^{1+\alpha}(\partial G)}$$

Thus, by [2] there arises

$$||D^2v||_{\alpha} \leq c ||\varepsilon^*||_{C^{1+\alpha}(\partial G)}$$

Since the components of $\mathbf{w} := \int_{\partial G} \frac{1}{r} \gamma^{*'} d\Omega'$ are single layer potentials, we conclude that

$$||D^2\mathbf{w}||_{\alpha} \leq c ||\gamma^*||_{C^{1+\alpha}(\partial G)}.$$

Using the well-known results for volume potentials, we arrive at

$$\|\nabla \mathbf{u}\|_{\alpha} \leq c(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\varepsilon^{*}\|_{C^{1+q}(\partial G)} + \|\gamma^{*}\|_{C^{1+q}(\partial G)}). \tag{1.7}$$

The objective is now to replace $\|\varepsilon^*\|_{C^{1+\alpha}(\partial G)}$ by fluxes of **u** or $\|\gamma^*\|_{C^{1+\alpha}(\partial G)}$ by circulations of **u**. The number of fluxes employed is m (none if m=0), and the number of circulations is n (none if n=0).

Besides the operator K, which has already been introduced, we need its dual in $L^2(\partial G)$. This is

$$(L\mu)(\xi) := -\frac{1}{2\pi} \int_{\partial G} \left(\frac{\partial}{\partial v'} \frac{1}{r} \right) (\xi, \, \xi') \, \mu(\xi') \, \mathrm{d}\Omega'.$$

The operator L belongs to the Dirichlet problem, I + L is the Dirichlet integral operator for the interior problem, I - L is the corresponding one for the exterior problem.

Moreover, $\mathcal N$ denotes the null space of a linear operator, and $\mathcal R$ is its range.

2. Estimates using the fluxes of u

We are going to prove

Theorem 2.1 Let $\mathbf{u} \in C^{1+\alpha}(\overline{G})$ for $\alpha \in (0, 1)$ and $m \ge 1$. We set

$$E_i := \int_{\partial \hat{G}} \varepsilon^* d\Omega, \quad 1 \leqslant i \leqslant m \text{ and}$$
 (2.1)

 $\varepsilon := \operatorname{div} \mathbf{u}, \gamma := \operatorname{curl} \mathbf{u}$ as well as $\gamma^* := -(\mathbf{v} \times \mathbf{u})$. Then the estimate

$$\|\nabla \mathbf{u}\|_{\alpha} \le c \left(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\gamma^*\|_{C^{1+\alpha}(\partial G)} + \sum_{i=1}^{m} |E_i| \right)$$
(2.2)

is valid with some constant $c = c(\alpha, G)$.

Proof. According to [6, pp. 114–116], the quantity ε^* satisfies the integral equation

$$\varepsilon^* + K\varepsilon^* = \frac{1}{2\pi}g\tag{2.3}$$

on ∂G , together with the side conditions (2.1). For g we have

$$g(\xi) = (v(\xi), \left(\operatorname{grad} \int_{G} \frac{\varepsilon'}{r} dx'\right)(\xi) - \left(\operatorname{curl} \left(\int_{G} \frac{\gamma'}{r} dx' + \int_{\partial G} \frac{\gamma^{*'}}{r} d\Omega'\right)\right)(\xi)).$$

In particular, we obtain

$$||g||_{C^{1+\alpha}(\partial G)} \le c(||\varepsilon||_{\alpha} + ||\gamma||_{\alpha} + ||\gamma^*||_{C^{1+\alpha}(\partial G)}).$$

The operator I + K is the Neumann integral operator on $\partial G = \partial \hat{G}$ for the exterior Neumann problem on \hat{G} . A basis of $\mathcal{N}(I + L)$ is given by (cf. [6, pp. 63–69])

$$\hat{h}^i|_{\partial G}$$
, with $\hat{h}^i(x) = 1$, $x \in \overline{\hat{G}}_i$, $\hat{h}^i(x) = 0$, $x \in \overline{\hat{G}} - \widehat{G}_i$, $1 \le i \le m$.

We find a basis $\{\tilde{h}_1, \ldots, \tilde{h}_m\}$ of $\mathcal{N}(1+K)$ which is dual to $\{\hat{h}^1|_{\partial G}, \ldots, \hat{h}^m|_{\partial G}\}$ (cf. [6, Theorem 1.2.4]). According to [2, cf. also 8], the operator K boundedly maps $C^{\alpha}(\partial G)$ into $C^{1+\alpha}(\partial G)$ and $C^{1+\alpha}(\partial G)$ into $C^{2+\alpha}(\partial G)$. (2.3) is now considered in $C^{1+\alpha}(\partial G)$. Let us attend to

$$f + Kf = h, \int_{\partial \hat{G}_i} f \, d\Omega = E_i, \quad 1 \le i \le m$$
(2.4)

if h belongs to the closed subspace $\mathcal{R}(I+K)$ of $C^{1+\alpha}(\partial G)$. The problem (2.4) has one and only one solution f in $C^{1+\alpha}(\partial G)$. The function f allows the decomposition

$$f = f_0 + f_1$$

with

$$\begin{split} f_0 &\equiv f_0(E_1, \ldots, E_m) := \sum_{i=1}^m E_i \tilde{h}_i \in \mathcal{N}(I+K), \\ f_1 &\in C^{1+\alpha}(\hat{O}G), \quad f_1 + Kf_1 = h, \quad \int_{\hat{O}G} f_1 \, \mathrm{d}\Omega = 0, \quad 1 \leqslant i \leqslant m. \end{split}$$

Obviously, f_0 and f_1 are uniquely determined. Arguing as usually by contradiction, we obtain that there exists a constant d > 0 such that

$$||(I+K)f_1||_{C^{1+\alpha}(\partial G)} \geqslant d||f_1||_{C^{1+\alpha}(\partial G)}.$$

Thus, we infer that

$$||f||_{C^{1+s}(\partial G)} \le c \sum_{i=1}^{m} |E_i| + \frac{1}{d} ||h||_{C^{1+s}(\partial G)}.$$

This completes the proof.

 \Box

In the case that m = 0, the problem is less complicated since the space $\mathcal{N}(I + K)$ consists only of $\{0\}$. The resulting estimate then is

$$\|\nabla \mathbf{u}\|_{\alpha} \le c(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\gamma^*\|_{C^{1+q}(\partial G)}),\tag{2.5}$$

as be clearly seen from the preceding considerations.

3. Estimates using the circulations of u

We are going to prove

Theorem 3.1. Let $\mathbf{u} \in C^{1+\alpha}(\overline{G})$ for $\alpha \in (0, 1)$. Furthermore, we confine ourselves to the case that the first Betti number be $n \ge 1$. Elements of the spaces

$$Z(G) := \left\{ \mathbf{z} \in C^{1}(G) \cap C^{\rho}(\overline{G}), \, \rho \in (0, 1) | \text{ div } \mathbf{z} = 0, \text{ curl } \mathbf{z} = 0, \quad (\nu, \mathbf{z}) = 0 \right\},$$

$$Z(\widehat{G}) := \left\{ \mathbf{z} \in C^{1}(\widehat{G}) \cap C^{\rho}(\widehat{G}), \, \rho \in (0, 1) | \text{ div } \mathbf{z} = 0, \text{ curl } \mathbf{z} = 0, \right.$$

$$(\nu, \mathbf{z}) = 0, \, |\mathbf{z}(x)| = \mathcal{O}\left(\frac{1}{|x|^{2}}\right), \, |x| \to \infty \right\}$$

will be called Neumann fields in G and \hat{G} , respectively. We set

$$\Gamma^{i} := \int_{\partial G} (\gamma^{*}, \hat{\mathbf{z}}^{i}) d\Omega, \quad 1 \leqslant i \leqslant n, \quad \{\hat{\mathbf{z}}^{i}\}_{1 \leqslant i \leqslant n} \text{ basis of } Z(\hat{G}) \text{ and}$$
 (3.1)

 $\varepsilon := \operatorname{div} \mathbf{u}, \gamma := \operatorname{curl} \mathbf{u}$ as well as $\varepsilon^* := -(v, \mathbf{u})$. Then the estimate

$$\|\nabla \mathbf{u}\|_{\alpha} \leqslant c \left(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\varepsilon^*\|_{C^{1+\alpha}(\partial G)} + \sum_{i=1}^{m} |\Gamma^i| \right)$$

$$(3.2)$$

is valid with some constant $c = c(\alpha, G)$.

Proof. By means of

$$\mathscr{T}_{C^{k+\alpha}}(\partial G) := \{ \gamma^* \in C^{k+\alpha}(\partial G) \mid (\nu(\xi), \gamma^*(\xi)) = 0 \ \forall \ \xi \in \partial G \},$$

 $k \in \mathbb{N}_0$, $\alpha \in [0, 1)$ equipped with the norms $\|\cdot\|_{C^{k+\alpha}(\partial G)}$, we obtain Banach spaces. Moreover, a linear operator

$$R: \mathscr{T}_{C^{0}}(\partial G) \to \mathscr{T}_{C^{0}}(\partial G), \quad R\gamma^{*} := \frac{1}{2\pi} \int_{\partial G} \left(v(\cdot) \times \operatorname{curl} \frac{\gamma^{*}(\xi')}{|\cdot - \xi'|} \right) d\Omega'$$

will be given. With regard to the set $\mathcal{F}_{C^{\circ}}(\partial G)$, we deduce

$$R\gamma^{*}(\xi) = -\frac{1}{2\pi} \int_{\partial G} \left(\frac{\partial}{\partial \nu} \frac{1}{r} \right) (\xi, \xi') \gamma^{*}(\xi') d\Omega' + \frac{1}{2\pi} \int_{\partial G} \operatorname{grad} \frac{1}{r} (\xi, \xi') (\nu(\xi), \gamma^{*}(\xi')) d\Omega'$$

(cf. [6, p. 137]). Henceforth, we choose $\alpha \in (0, 1)$. The vector $\gamma^* := -(v \times \mathbf{u})$ belongs to $\mathcal{F}_{C^{1+\epsilon}}(\partial G)$ and satisfies the integral equation

$$(I+R)\gamma^*(\xi) = \frac{1}{2\pi}\mathbf{f}(\xi)$$
 with $\xi \in \partial G$ and

$$\mathbf{f}(\xi) := v(\xi) \times \left[\left(\operatorname{grad} \left(\int_{G} \frac{\varepsilon'}{r} \, \mathrm{d}x' + \int_{\partial G} \frac{\varepsilon^{*'}}{r} \, \mathrm{d}\Omega' \right) \right) (\xi) - \left(\operatorname{curl} \int_{G} \frac{\gamma'}{r} \, \mathrm{d}x' \right) (\xi) \right]$$

(cf. [6, p. 126]). As in section 2, we obtain

$$\|\mathbf{f}\|_{C^{1+\alpha}(\partial G)} \leq c(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\varepsilon^*\|_{C^{1+\alpha}(\partial G)}).$$

The Riesz number of R is 1 [6, p. 152]. Using [6, p. 139, p. 150, p. 141], we therefore realize that there exists a basis $\{\gamma_1^*, \ldots, \gamma_n^*\}$ of $\mathcal{N}(I+R)$ with

$$\int_{\partial G} (\gamma_i^*, \hat{\mathbf{z}}^k) \, \mathrm{d}\Omega = \delta_i^k$$

(cf. [6, p. 147]). For each $\mathbf{h} \in \mathcal{R}(I+R) \subset C^{1+\alpha}(\partial G)$ we find a uniquely determined solution $\mathbf{g} \in C^{1+\alpha}(\partial G)$ of the problem

$$(I+R)\mathbf{g} = \mathbf{h} \int_{\partial G} (\mathbf{g}, \hat{\mathbf{z}}^i) d\Omega = \Gamma^i, \quad 1 \le i \le n.$$
(3.3)

Moreover, there exists a unique solution $g_1 \in C^{1+\alpha}(\partial G)$ of

$$(I+R)\mathbf{g}_1 = \mathbf{h}, \quad \int_{\partial G} (\mathbf{g}_1, \hat{\mathbf{z}}^i) d\Omega = 0, \quad 1 \leqslant i \leqslant n.$$
(3.4)

We define

$$\mathbf{g}_0 \equiv \mathbf{g}_0(\Gamma^1, \ldots, \Gamma^n) := \sum_{i=1}^n \Gamma^i \gamma_i^*.$$

Consequently, \mathbf{g}_0 is an element of $\mathcal{N}(I+R)$. Altogether, each solution \mathbf{g} of (3.3) may uniquely be decomposed into \mathbf{g}_0 and \mathbf{g}_1 :

$$\mathbf{g} = \mathbf{g}_0 + \mathbf{g}_1.$$

We take from [2, 8] that $R|_{C^{1+a}(\partial G)}$ is a compact operator in $\mathcal{T}_{C^{1+a}}(\partial G)$. Therefore, $(I+R)|_{C^{1+a}(\partial G)}$ is a Fredholm operator and $\mathcal{R}(I+R)|_{C^{1+a}(\partial G)}$ is closed. Furthermore, I+R maps $\mathcal{T}_{C^{1+a}}(\partial G) \setminus \mathcal{N}(I+R)$ into $\mathcal{T}_{C^{1+a}}(\partial G)$. The restriction to the image of this operator constitutes a homeomorphic mapping. As the solution \mathbf{g}_1 of (3.4) belongs to $\mathcal{R}(I+R)|_{C^{1+a}(\partial G)}$, we obtain, according to Banach's open mapping theorem, the estimate

$$d \| \mathbf{g}_1 \|_{C^{1+\alpha}(\partial G)} \le \| (I+R)\mathbf{g}_1 \|_{C^{1+\alpha}(\partial G)}$$

with a constant d > 0, and thus

$$\|\mathbf{g}\|_{C^{1+s}(\partial G)} \leqslant c \sum_{i=1}^{n} |\Gamma^{i}| + \frac{1}{d} \|\mathbf{h}\|_{C^{1+s}(\partial G)}.$$

Hence Theorem 3.1 is proved.

In the case that n = 0, the space $\mathcal{N}(I + R)$ consists only of $\{0\}$. Consequently, we then get

$$\|\nabla \mathbf{u}\|_{\alpha} \leq c(\|\varepsilon\|_{\alpha} + \|\gamma\|_{\alpha} + \|\varepsilon^{*}\|_{C^{1+\alpha/2}(\Omega)}). \tag{3.5}$$

Remark. Let $\{\hat{c}^1, \ldots, \hat{c}^n\}$ be a basis of the first homology group with regard to \hat{G} . This basis is given by closed curves around the handles of G. For each \hat{c}^i we denote by $\hat{\tau}$ the corresponding unit tangent vector. Provided

$$(v, \operatorname{curl} \mathbf{u}) = 0.$$

we take from $\lceil 3, p. 72 \rceil$ that

$$\int_{\partial G} (\gamma^*, \hat{\mathbf{z}}^i) \, \mathrm{d}\Omega = \int_{\hat{c}^i} (\hat{\tau}, \mathbf{u}) \, \mathrm{d}s, \quad i = 1, \dots, n.$$
(3.6)

Then the Γ^i , (i = 1, ..., n) are equal to conventional circulations.

References

- Agmon, S., Douglis, A. and Nirenberg, L., 'Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I', Commun. Pure Appl. Math., 12, 623-727 (1959).
- 2. Heinemann, U., 'Die regularisierende Wirkung der Randintegraloperatoren der klassischen Potentialtheorie in den Räumen hölderstetiger Funktionen', *Diplomarbeit*, Bayreuth, 1992.
- Kress, R., 'Grundzüge einer Theorie der verallgemeinerten harmonischen Vektorfelder', Methoden Verfahren Math. Phys., 2, 49-83 (1969).
- 4. Morrey, C. B., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
- Schwarz, G., 'Hodge decomposition—a method for solving boundary value problems', Lecture Notes in Mathematics Vol. 1607, Springer, Berlin, 1995.
- Wahl, W. von, 'Vorlesung über das Außenraumproblem für die instationären Gleichungen von Navier-Stokes, Rudolph-Lipschitz-Vorlesung', Sonderforschungsbereich 256, Nichtlineare Partielle Differentialaleichungen. 11. Bonn. 1989.
- 7. Wahl, W. von, 'Estimating ∇u by div u and curl u', Math. Methods Appl. Sci., 15, 123-143 (1992).
- 8. Wiegner, M., 'Schauder estimates for boundary layer potentials', Math. Methods Appl. Sci., 16, 877-894 (1993).