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Monotonicity and boundedness in the Boussinesq-equations

B. J. SCHMITT and W. VON WAHL *

ABSTRACT. — The onset of convection from the motionless state of the Boussinesq-approximation to Bénard-
convection is studied for both stress-free and rigid boundaries for solutions which are periodic in the horizontal
directions with wave-numbers o and B. The critical Rayleigh-numbers R («, B) for the kinetic energy are
displayed graphically as a surface {(«, B, R(x, B))|o, B>0} in R3. For stress-frec boundaries and small initial-
values it is proved that the position of the point (x, B, R) relative to the onset governs the behaviour of a
generalized energy functional which involves the spatial derivatives of the solution, i.e., below the onset
exponential decay takes place. For (o, B, R) on the onset it is shown that the motionless state is stable in the
sense of Ljapunov with respect to a functional involving even higher order derivatives than the first mentioned
functional. Above the onset it becomes unstable. Throughout the paper, the decomposition of the velocity
field into a poloidal part, a toroidal part and the mean flow is employed as an essential tool.

1. Introduction, notations. The differential operators in the Boussinesq-equations

We consider the Boussinesq-equations (k=(0, 0, 1)T)

v—AutuVu— /R8k+Vn=0, V-u=0,
(1.1 {_ - - - \/— B -

Pr9~A8+Pru-V9— /Ru,=0

for an infinite layer R? x (—(1/2), 1/2) heated from below. Pr>0 is the Prandtl-number,
R>0 is the Rayleigh-number, u, 9 have the usual meaning, and = is the pressure. The
boundary-conditions at z=+(1/2) are the usual ones: Stress-free boundaries or rigid
boundaries. They are explained below. ‘ refers to the derivative with respect to time, and
we also prescribe the initial values u, 9, at time r=0. u, 9 and = are required to be
periodic in (x, y)e R? with respect to a rectangle 2 =(~(n/a), n/ot) % (- (/P), 7t/B) with
a wave-number « in x-direction and a wave-number B in y-direction.

The aim of this paper is two-fold. In Section 2 we give a graphical representation of
the onset of convection. This is a surface in (a, B, R)-space referred to as the onset. Its
equation has been derived rigourously in [Schmitt & von Wahl, 1992, Proposition 2.3}
in the case of stress-free boundaries and in {von Wahl, 1992, Theorem VI. 1, (VI.7)] in
both cases. The onset of convection is characterized by the following property of the
kinetic energy E(¢)=|u(t)||i2q+Pr||9(t) |2y Q=2x(—(1/2), 1/2), at time ¢:
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246 B. J. SCHMITT AND W. VON WAHL

Below or at the onset E is monotonically non increasing for any initial value, above the
onset E is strictly monotonically increasing, at least initially, for suitable initial values.
The onset is parameterized by the independent variables a, B. A particular part of the
onset is a net of lines where the surface is Lipschitz continuous only. On these lines
interesting bifurcation phenomena may take place; this has been studied under stress-
free boundary conditions and in the two-dimensional case, i.e. the case of convection
rolls, by [Busse & Or, 1986]. All points on the onset are eigenvalues of even multiplicity
of an associated eigenvalue problem (cf. Sec. 2 to follow). That the determination of the
onset of convection requires a more detailed analysis than simply this was apparently
known before (¢f. [Beck, 1972]). In Section 2 we give the analytical formula for the onset
by stating a necessary and sufficient condition for E to behave monotonically non
increasing for any initial value. The formula looks quite similar to what has been written
in [B, 1972] in a different situation; its rigorous proof becomes straightforward when
using abstract tools and the decomposition of u into poloidal fields, toroidal fields and
the mean flow as is done in [S & W, 1992], [W, 1992].

From the above discussion it is clear that the kinetic energy E can be considered, at
least below the onset, as a Ljapunov-functional whose behaviour is governed by the
position of (a, B, R) relative to the onset. The norms occuring in E are however too
weak to guarantee the global existence of a strong solution even if we start with initial
values having small energy-norm below the onset. It might be desirable therefore to
construct a Ljapunov-functional L which involves higher order norms of u, $ on one
hand and whose behaviour is governed by the same onset we have found for E on the
other hand. We construct L in the case of stress-free boundaries and prove that L(¢) is
steadily decreasing below the onset provided L(0)<e. In this case the solution exists
globally in time. Above the onset L may strictly increase at least initially, no matter how

small the initial value is. The formula for L is given in 1. 14 below.

L (r) majorizes ¢(||Vu(r)||2+]|V9(2)||*) where ¢ is a positive constant. The idea of
introducing ||Vu(2)||>+||V8(t)||? into a so-called generalized energy-functional is not
new. We refer to the comprehensive work [Galdi & Padula, 1990] and the references
therein, in particular to section 11 for the Boussinesq-equations under stress-free boundary
conditions. Whereas these authors refer to R,=min { R (a2, B?)| (e, B, R (o, $2)) as defin-
ing the onset } (¢f. our results. In fact, in [G & P, 1990] the system (1.1) is studied with
additional terms which are due to rotation for example) for the behaviour of a sufficiently
regular solution, here we study the existence and behaviour of a solution with a depend-
ence on (o, B, R) relative to the onset. It may be added that E(r) is known to be
bounded, uniformly in 7, above or below the onset, whether the initial values are small
or not (¢f. [Temam, 1988, p. 132]). L(r) however cannot in general be excluded from
blowing up at a finite time unless Pr=+co (¢f. [von Wahl. 1991]; in this case L (¢) stays
bounded, uniformly in ¢) or the problem is two-dimensional, i.e. we have convection
rolls.

On the onset itself L(¢) stays bounded if the initial values are small enough. In
Section 4 we even construct an absorbing set in a stronger norm (than that represented
by L) for a basin of small initial values. This set also turns out to be small, its bound
depending on R.
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THE BOUSSINESQ-EQUATIONS 247

Since the onset precisely consists of the smallest positive eigenvalues of a selfadjoint
eigenvalue-problem associated with (1.1) (¢f. Sec. 2 to follow) it turns out that the
energy-stability (i.e. with reference to E(r)) of the motionless state =0, 9=0 with
respect to the particular disturbance u(¢),9(r) under consideration is governed by the
position of (o, B, R) with respect to the onset. This is in principle known. As for the
rigid case we refer to [Kirchgissner & Kielhdfer, 1973]; since we treat (1.1) within a
different formulation we will give a proof elsewhere, both in the terms we use here and
in a more general connection. As for the case of the stress-free condition we indicate
this very briefly in the end of Section 4 for Pr=1; we take L instead of E but otherwise
also follow the ideas in [K & K, 1973, p. 307].

When constructing the onset and L the decomposition

(1.2) L_4=curlcurl(pl_c+curl\|11_c+j_’
=P+T+f

into a poloidal field P, a toroidal one T and the mean flow f can be used to advantage,
as already mentioned. (1.2) holds for solenoidal (i.e. divu=0) vector fields periodic
in x, y with respect to 2. ¢, ¥ are uniquely determined if we require them to be periodic
in x, y and to have vanishing mean value over 2. The mean flow f depends only on z
and has constant third component f;. When applying (1.2) to (1.1) the boundary
conditions on u become equivalent ones on @, ¥ and f. Moreover f;=0. The boundary
conditions on u at z= % (1/2) are -

(1.3) 0,u,=0,u,=u,=0 in the case of stress-free boundaries,

(1.4 u=0 in the case of rigid boundaries,

and the new ones read correspondingly

(13,) (p=63(p=az‘l’=azfl=azf2=0
(1.4) 0=0,0=Y=f,=/,=0

at z= +(1/2). As for 9 we have 8=0 at z= £(1/2) in either case. The system (1.1) itself
is transformed into an equivalent one for ®= (o, ¥, 9, f, f>)T. It has the form

(1.5 Q?CI)’+¢(I>—\/§‘€CI)+//1(<I>)=O

with matrix operators %, o/, € and a nonlinear term /#. ./, # turn out to be
diagonal and strictly positive definite selfadjoint operators in an appropriate Hilbert
space H. H is simply the product Lg(Q)x L (Q)xL2(Q)x (L4 ((—(1/2), 1/2)))* or
L (Q) x L (Q) x L2 (Q) x (L2 ((— (1/2), 1/2)))? for stress-free boundaries or rigid boundar-
ies with Q=2 x (—(1/2), 1/2). The subscript ., indicates that ¢, ¥ have vanishing mean
value over 2, whereas f is required to have vanishing mean value over (—(1/2), 1/2) in
the case of stress-free boundaries. The pressure is eliminated. The highest order derivatives
of u,=—(02+0?) ¢ are isolated in a single equation, the nonlinearity .# (®) is almost
local. This approach was discussed in detail in [S & W, 1992].
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We now introduce some notation and then discuss the differential operators
occurring in (1.5). A vector field u or f is usually written as a column, i.e.
u=(y, Uy, U3) =y, uy, )", f=(f1, 2, [3)] =(f, f,» )7 with the symbol . for transpo-
sition. Correspondingly we sometimes write (x, y, z) as (x,, x,, x3). As for differentiation
we use

ai, 65, a7 for the o times applied operator d,, . . .

2 2 n2
0,5 075y Oxs Ops Oszs - - -

Ay=02+d2, §.=curleurl.k=(0,,.,d,;., —A,.)", &.=curl.k=(J,.
functions. and ‘

~d..,07 for
0, 8%, ... for any first, second, ... order derivative.

If no confusion can arise we also use 91, for any g-th order derivative with respect to
x, y. When 2=(—(r/o), njo) x (—(n/B), n/B) is the periodicity cell then we consider
Sobolev-spaces H*?(Q) of x, y-periodic functions over the layer Q=2 x (—(1/2), 1/2),
keN, p>1. These have the usual meaning. In most cases we deal with p=2. Then, if
@eH*2(Q) and

1 ; .
O,y =—= Y a @™ in L?(Q),

\/‘g xeZ?

we obtain equivalently

Edoe y)=— T Ba,@laxF (B in 12@)

EV4 2 xez?

for a+B+y<k. The norm is given by

- . 12 - -
|z arell*=[|a:d0drol|t2@= X |0 a, (2)|* dz (o)™ (B,)*®

xez?d-1/2

by Levi’s Theorem. It is clear now how Parseval’s equation reads. Equivalently we can
introduce the Sobolev spaces H, = H4 2 of #-periodic functions in the plane with exponent
of integration 2 (¢f. [S & W, 1992, Sect. 1]) and consider the spaces

W¥((a, b), Hj)

where (a, b) is an open interval on the z-axis. They consist of the mappings
f: (a, b) > Hy with 0204, feL*((a, b), H3)=L1?((a, b), L* (%)) for any integers p, ¢20
with p<k, ¢<I and p+g<max{k, /}. They become a Hilbert space in the usual way.
A selfadjoint operator A in a Hilbert space # is called strictly positive definite iff
(Au, 2y|lu||? ue2(A), for some y>0. C*([a, b], #) is the usual space of k-times
continuously differentiable functions on [a, b] with values in the space #. The matrices

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 12, N° 2, 1993



THE BOUSSINESQ-EQUATIONS 249

in (1.5) have the following form:

(-A)(-4) 0 0 0 0
0 (-A) 0 0 0
B= 0 0 PrI 0 0
0 0 0 I 0
0 0 0 0 I
A*(—A,) 0 0 0 0
0 (—A)(-4) O 0 0
o = 0 0 (-4 0 0
0 0 0 (-3 0
0 0 0 0 (-8
0 0 (=A) 0 0
0O 0 0 0 0
=1 -a) o o o o ]
o 0 0 0 0
0 0 0 0 0

the nonlinearity .# (®) is given by

8. ((Bp+eb+/)-V(@Eo+ey+/))
—£.(Bpt+evt/)-V@o+ey+f))
Pr(@o+ey+/f)-V3

A= -—‘—f (89 +2¥)-V (B0 +g¥), drdy
EdRE

1
T f @ +el)- V(8o +ey),dxdy
12| Js
Beside u=3¢ +&y +f we will also use the notation

u=30¢+zey.

The system (1.5) is most easily treated within an appropriate Hilbert space H, where
o, # become strictly positive definite selfadjoint operators and € is hermitian. As the
Hilbert space H with norm ||. || we take

H= X Hyx H x #1 x 1

with ey, Ve Hy, Y€, fie #', f,€#" in the case of rigid boundaries. Here

fM={(B|(BEWO<<——;-, —;—), L;),J (T)dxdy=0},
@
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250 B. J. SCHMITT AND W. VON WAHL

eow((-43)
eefnree(( )

Hy, H are made Hilbert spaces in the usual way. For # ! we choose the inner product
1/2

(fs g)=|g’|J f.gdz.

-1/2
In the case of stress-free boundaries we take
H=y X HyX H X Hyx Hy

with #) being the closed subspace of #' which consists of the f with vanishing mean
value over (—(1/2), 1/2). Now we can define &/, %, € by defining A=AY(—-A)),
B=(—A)(—A,) for ¢, B=(—A)(—A,) for { and —A for 3, — 02 for fy, f5, — A, for o,
V and also 9. Observe that we have two different kinds of operators (—=A)(—A,) in the
case of stress-free boundaries. To emphasize this we will write

(—A,) instead of (—A)

when dealing with \ in the stress-free case.

DEFINITION 1.1, — We expand ¢, i, § into series

(1 6) (p(x, ¥, Z)=—1—— Z a, (Z) ol s By)’
N lﬂ xeZ?\(0}
1.7 Vond=—e Y b @,
A/ 2 xeZ2\(0}
(1 8) S(X, ¥, Z):__l_ Z ¢, (Z) PUSNCE By),
A/ 2 xez?

which are convergent in W° ((—(1/2), 1/2), L}). Set

A=k} +p*x;—07)
=(a2k2+p2x2)> -2 (k3 + P2k} 02+ 05, xkeZ?\{0},

@(Ax)={f|feH4<<—%, -;—)) with either f=0, f=0

1
at z= :i:% or f=02 f=0at z= ii}
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Then A, is a strictly positive definite selfadjoint operator in L*((—1/2, 1/2)). We define
A=A%(—A,) on

@(A)={(p|(peXM, @ is expanded as in (1.6), a,€ D (A,), ke Z*\{0},

12
5 (azxf+ﬁZK§)2|AxaK|2dz<+oo}
xez\{0}v-1/2
by
1 .
Ap=—— Y (*k2+P2x3)A g ™ CoP),
/ g’l xeZ2\{0}

Set

B.=o?k}+p2xi-02, xkeZ\{0},
- 2(( L DN ih =0 ar 2= 21
2(B,) {f]feH << 2,2>)wzthf 0atz :1:2}.

Then B, is a strictly positive definite selfadjoint operator in L*((—(1/2), 1/2)). We define
B=(-4)(~A,) on

2B)= { ©| Qe Hy, ¢ is expanded as in (1.6), a,e 2 (B), keZ2\ {0},

1/2
Y f (uzxf+BZK§)2|§KaK|2dz<+oo}

xeZ2\{0}v—1/2
by

Bo= (0?k?+B2x2)B g e P,

1
—— %
/ 2 xeZ2\{ 0}

B.=a?xi+Pp*k3-02, keZ\{0},

Let

@(BK)={f|feH2<<—%, %)) with either f=0 at z= :I:% ord,f=0at z= :I:%}

Then B, is a strictly positive definite selfadjoint operator in L*((—(1/2), 1/2))(|x|21)).
We define B=(—A)(—A,) on

9(B)={\|1|\j/€9fw V is expanded as in (1.7), b,e 2 (B,), xe Z*\ {0},
1

2
Y (aZKf+B2K§)2|EKbK|2dz<+oo}

xeZ2\f0}v—1/2

(0®x}+B2x2)B b e @B,

1
By=— Z
/ g’] xkeZ2\{0}

It is now obvious how —A is defined for 8, i.e. in #, —A, in Hy or #, —3? in H*
or Hy.
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252 B. J. SCHMITT AND W. VON WAHL

Now it’s easy to prove that A, B, B, —A, —Ay, —A,, — 8?2 are strictly positive definite
selfadjoint operators in the corresponding Hilbert spaces The same applies to A% under
various boundary conditions. Observe that in # the operator (—A,) is only nonnegative
selfadjoint. The fractional powers (—A,)?, p>0, are nevertheless well defined. Ong can
use the series (1.10) to follow.

As a consequence we find that o/, 4 are strictly positive definite selfadjoint operators
in H. As for the fractional powers we have, for example,

(1.9 (=APYor (~APY=—r T BRhes )

N/ 2 xeZ2\{0}

1 )
Z (d2 K% + BZ K%)p bx euc Ha., B.)’

A/ 2 xeZ2\{0}

where Vs is expanded as in (1.7). p is any real number. It is obvious that J%, commutes
with A, B, ... on suitable subspaces of L?((—(1/2), 1/2), L*(#)) (which is identified
with L2 (Q)). This material was dealt with in [S & W, 1992], [W, 1992].

The choice of the various Hilbert spaces of functions with vanishing mean values
corresponds to the invariance properties of the nonlinear terms. For these and other
invariance properties see [W, 1992, ch. IV]. The norm || A. || is equivalent with the norm
of W*((—(1/2), 1/2), H5). Corresponding equivalences hold for the other operators. See
[W, 1992, ch. III]. The spaces within which we solve (1.5) are now at hand. We are
looking for solutions ® with

(1.10) (A=

(1.11) ®eL?((0, T), 2 («)),
(1.12) ' eL?((0, T), 2(B),

and, as a consequence of (1.11), (1.12),

(1.13) 2®eC° ([0, T], H)
with
VB 0 0 0 0
0 (—A)Y*B!2 0 0 0
9= 0 0 JPV 0 0
0 0 0 a, 0
0 0 0 0 .

(2 ©eC° ([0, T}, H) means that each component of VB @ is continuous from [0, T] into
AL and so on for VY, VA D.)

2(2)= { oloe B), Voe2 (B) for rigid boundaries and
Boe 2 ((—A)'?) for stress-free boundaries }
X 9 ((—A)V2BY2) x D ((— M)A x 2 (- 8D x D (= )?).
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The initial value is also taken from 2(2). || 2. || is simply ||V #.]. Thus (1. 13) implies
VADeC([0, T], H). In what follows we will call a solution with properties (1.11),
(1.12), (1.13) a strong solution. Sometimes we simply speak of a solution.

The Ljapunov-functional L (¢) can now be expressed in terms of the operators we have
introduced. It reads (||.||=|.||2@)

(1.14) LO=[(=D)(=2)" e [I?+ (A0 (=2 >V () ||?

+Pr|[(=0)28()[|2+]]0. fL (D] >+ 0. ()2

(stress-free boundaries). For its construction we need some auxiliary operators which are
introduced below. We set for stress-free boundaries

(—A) 0 0 0 0 ¢
0 (-Ay O 0 0 "
A D= 0 0 (—A) 0 0 9
0 0 0 (-8 0 1
0 0 0 0 (=62 />
(=M (A2 0 0 0 0 ®
0 (A2 (—AY'? 0 0 0 v
20= 0 0 \/ﬁ(—A)”Z 0 0 9
0 0 0 a9, 0 A
0 0 0 0 4. /5
(—A)P2(—AY'? 0 0 0 0 ©
0 (AN (=AD'2 0 0 0 v
a D= 0 0 (=) 0 0 9
0 0 0 -0 0 /i
0 0 0 0 - 1

=

A=(-A),B=(-Ay), Z=(—A)3/2(—A2)1/2, B=(~Ay)(—A,)"%. The definitions corre-
sponds to those we have already given for &/, %, A, B, ...
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2. The onset of convection

We refer to the definition of the onset of convection we have given in Section 1. Here
we provide the mathematical background. The eigenvalue-problem (y>0)

q (f) ,=<Y2(72“5§)2f>:<7wzg>
"\g Al M f
in (L2((—(1/2), 1/2)))* with f=g=20, f=0 at z=+£(1/2) in the case of rigid boundaries
and f=g=02f=0 at z= +(1/2) in the case of stress-free boundaries has a minimal
positive eigenvalue p(y?). This can be proved by Courant’s method (cf. [W, 1992, ch.

VI] and Sec. 3 to follow). We can express the onset of convection in terms of 1 (y?). The
following assertion was proved in [W, 1992, ch. VII.

TueoreMm 2.1. — Let T>0, let ® be a solution of

BU+of O— /REO+.M(®)=0
Q2.1 { " JREDHAD)

P (0)=2,

over (0, T) as introduced in Section 1. Set

-1
SRa@=( | s lee. 2,
vcaanio) (O, 0)

where @, Vi, 8 in @=(0, V, 9, fi, fo)" are expanded as in (1.6), (1 .7, (1.8). Then

2.2) R, (o7, %)= min n2 (@2 k7 + B2 63).

v=(xy, k2) e Z2\{ 0}

® has monotonically non-increasing kinetic energy ||$1/2®(t)|lz=lly(t)|l2+Pr|l9(t)“2
for any initial value O, €2 (2) if and only if

2.3) RER,;, (0, B7).
If (2.3) holds then we obtain
(2.4 H%’”“D(t)ﬂzgnﬁ”ztbon2, tef0, Tl

The onset of convection is thus the surface (R* xR*, Ry (RTXRY)) in R* with R*
being the positive reals and with R, being the mapping given by (2. 2). As can be seen
from the plots to follow an interesting part of the onset is a net of lines where the
surface is Lipschitz-continuous only. According to [B, 1972] those lines can be understood
as the set of points where the preferred cellular pattern changes.

As it is evident from Theorem 2.1 the onset of convection consists of the smallest
positive eigenvalues R, (a%, B of O=)L¥® (again use Courant’s method on
|t =172 @012, W)| ||| P||* and observe that of ~ 2@/ =12 is compact and hermi-
tian).
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The method of calculating the eigenvalue p(y?) is well known. In the stress-free case
we have p(y?)=(y*+n?)*?*/y (see e.g. [Chandrasekhar, 1961, p. 35]), thus p? attains its
global minimum at

(2.5 Y, = n/\/ﬁ with minimal value R, :=p? (y?)=27n*/4.
NN
° 0.0 1.0 2.0 3.0 4.0 5.0

x=% /o
5

Fig. 1. — The set of points where r,,;, attains its minimal value R is given by a system
of straight lines and hyperbolas. For vy, and r_;, see (2.5), (2.5, (2.6).

In the case of rigid boundaries the characteristic equation for p(y?) turns out to be
transcendental, hence p(y?) is known only from numerical computations, cf. [C, 1961,
p. 36-43). As for the minimum we have

2.5) v.=3.116. .. with minimal value R,=1707.762. . .

Following [B, 1972] we wish to describe the onset in terms of the box geometry
parameters for . Therefore we use the transformation

(2 6) x=£! y:ﬁ’ rmin (X, y)szin (azﬁ BZ)’
allowing us to treat stress-free and rigid boundary conditions in a more unified way. In
either case we get r,;. (x, »)=R_ if and only if

SRS 2
_2+)7—1 for some ke NZ\ {0},

so the set of points where r_;, attains its minimal value R, consists of a system of straight
lines and hyperbolas as is shown in Figure 1.
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256 B. J. SCHMITT AND W. VON WAHL

]

T T T T 1
0.0 1.0 2.0 3.0 4.0 5.0

x=% /«
2

0.0

Fig. 2. — The net of lines where r;, is Lipschitz continuous only. The change between the modes (k, 0)
and (k+1, 0) occurs at x=[k?> (k+ 1) ((k+1)> + k2/)/2]"/? (stress-free boundaries). See (2.6) for ry;,.

The net of lines in Figure 2 is produced by marking each (x, y)e R* x R* that satisfies
Foin (%, 1) =12 ((K2/x?) + (c3/y?)y2) for at least two different modes keNF\ {0},
whereas the connected domains marked out by the net are related to single modes « (the
preferred cellular patterns) so that r,;, restricted to these domains is given uniquely by
n? ((2/x?)+ (c3/y*) v3). The structure of the net is not affected by the differing choice
of p for stress-free and rigid boundaries, thus it is common to both cases as well as to
the situation studied in [B, 1972].

As a result the three-dimensional plots in Figure 3 and Figure 4 on the next pages
possess similar shapes. The plots are intended to show the qualitative behaviour of r,,.
Because r,;, (x, y) = R, rather quickly as x*+3y* - co we have rescaled the z-axis by
drawing

(%, Y) i (6 Y) = pPRIP=[(1 =) R

with appropriate scaling parameters c€(0, 1], pe[0, 1). Figures 3, 4 show the results for
c=0.5, p=0.97. The singularity occuring for x=y=0 is cut off at the level z=14.0.

3. A Ljapunov-functional in the case of stress-free boundaries
In this section we are going to prove that |2 ®(¢)]| is a Ljapunov-functional for the
nonlinear Boussinesq-equations, in a sense which is made precise in Theorem 3.1 below.
THEOREM 3.1. — Let ® be a (strong) solution of
BO+AD—_ /RED+.M(D)=0,
3.1 { \/
O0)=0,e2(2)
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Fig. 3. — The onset of convection as a function r,
of the scaled box geometry parameters x and y (stress-free boundaries).

min

over (0, T) as introduced in sect. 1. The boundaries are assumed to be stress free. Let
R <R, (a%, B?). Then there is an e=¢ (1 —\/R/Rmin (o2, B?), o, B, Pr)>0 such that
|2 @ (1) is steadily decreasing if || 2 ®, || <e, and,

in this case, has an exponentially decreasing bound.

If conversely R>R;, (o%, B?) then there are initial values ®ye D (/) with || F ®, || arbitra-
rily small such that
|2 @ ()|| strictly increases at least initially.

provided DeC° ([0, T, D (7).

It is not hard to show that in the first case the (strong) solution exists globally in
time. This will be done afterwards, as well as showing the property ®e C° ([0, T], 2 («))
in the second case.
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Fig. 4. — The onset of convection as a function r,
of the scaled box geometry parameters x and y (rigid boundaries).

min

Proof of Theorem 3.1. — (3.1) is multiplied scalarly by .« ®. This gives

(1), Z D) (M @(1), M(r»>=
| @) |2 ® ()|

d, ~ ~ o
Zi?”gq)”2(t)+2“&/q)(t)||2<1_\/R
For ®e 2 (s7), ®=(0, V, 9, f;, /»)" and with @, § expanded as in Section 1, we obtain

N +1/2
G2 |Zo|*z ¥ f (@ 2+ B K2)- (02 4 B k2)— 82)P -,
xeZ2\(01vY—1/2
F(OA K +BTRD - 02, s,
- +1/2 _
3.3) %0, 70)= Y J o2+ B2 ) (0 k2 + B kD) — 02) -G,
xkeZ2\J0}v—1/2

+ (o Kk} + B i) (@ 1} + B2 K3 — ) a0, .

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 12, N° 2, 1993



THE BOUSSINESQ-EQUATIONS 259

The eigenvalue-problem (v >0)

H <f>={vz (=’ f=r7 (v’ - g,

3.4
5 g (V=) g=M*(y*-3D f

in (L*((=(1/2), 1/2)))* with f=g=0 at z= £(1/2), f e D (y* — 2)*), g€ D ((y* — 82)°), has
a minimal positive eigenvalue p (y?). Due to the symmetry of the operator

s=< 0 v (y*—03)
T \Y (2 -02) 0

in (L*((—(1/2), 1/2)))* this is most easily checked by applying Courant’s method for
finding the eigenvalue of a compact selfadjoint operator which has largest modulus. At
the same time we get (F=(f, g)h)

3.5) u(v2>=( “S—F—F—”>

reamy). Fzo (H,F, F)

p(y?) is well-known, its value being (y2+n2)*?/y (cf. [W, 1992, ch. VI] for this method,
[C, 1961, p. 35] for another and the value of p(y?)). (3.5) immediately yields

3.6) |22 ¥ p2x+prcd).
ceZ\{0}

+1/2
J [0 [(e? kT + B2 D). (¢ kT + B2 K3) — 32) ¢ 4y
-1/2

X

+ (o k3 B2 ) (07 ki + B2 kD) — 0 o, - ¢ ] dz

> min p(lki+p2d).[ (€0, 4 D)
xeZP\{0}
/Ruin @7, B [(6 @, 7 D).

min

i

Now we have to estimate |(/ (®), =§/<D)|. With u=d¢p+ey+ J_’ we obtain, for some
pe(0, 1), the estimates

(3.7) lu-Vall Sclldo+eb+/|co |V @o+eb+/)]
Zcl|l# o2 0],
(3.8 [u-v8[sc|' @[] Z®]|.

For the proof of | ul|co (5)§c||5{ '7P®|| ¢f. the Gagliardo-Nirenberg inequality and
[Friedman, 1969, p. 177]. Moreover we have, as a consequence of (3.7), (3.8),

(3.9) |@-(u-Vu), Ag)|<c|lu-Vul|Ao]
(3.10) |- (u-Vu), BY)[<cllu-Vull||By|
(3.11) |(-V8, A9)|<|lu-VS || A8
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3.12) U/ f (59+ 1)V (50 + ), dx dy (— 02 f,) dz
—12J2

(]

<c||@Bo +e)-V@o+eh). ||| 02 /1 | scl| &' P o||| Z 0| # @

1/2 ~ -~ =
(3.13) U J Bo+eV) V(@ +ey), dxdy(—02 fy)dz| <c|| ' 0|[| 20| 2.
P

— 152

Combining (3.7), (3.8) with (3.9)-(3.13) we find

|4 @), 7D)|<M| Do 70| Z o],

where M =M (a, B, Pr) depends on «, § and Pr. This gives

ﬂ & 2 = 2 ___\/E__— G )
614 —|F0|@+2| T 00| (1 NCA M| @@ (1] |=0.

This proves the first assertion. If R>R_; (d,, B?) we choose an eigenvector ®, with
&, D (), A D,= /Raia (0%, P2)%¢ ®,. Then we set

@ (0)=pd,=0,
where p is any positive number. We have

| ® || =( Dy, F D)= /R (@7, B) (€ Dy, & D).
Consider the (strong) solution of (3. 1) with initial value ®,. Then

(3.15) 1||9q>||2(0)+2||&c1> ||2<1——\/i—~—+0(5)>=0.
d1 ° Roain @, B?)

For sufficiently small p we find d/dt||2 ®||*(0)>0. Let us make a final remark concern-
ing the preceding reasoning. For a strong solution ® we have by definition

deCO([0, T}, 2 (2)),

and in particular
©eC°((0, TI, 2(2)).

djdt|| 2 ®|? in (3.14) is the distributional derivative of ||Z ®||. Thus the conclusion
after (3.14) is justified. To get (3.15) we observe that from

®eC ([0, T), D(H))

it follows that (.# (®(.)), & ®(.))) is continuous on [0, T); we infer this from (3.7)-
(3.13). Thus || 2 @||*(.)eC! ([0, T)). U
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THEOREM 3.2. — Let @ be the strong solution of
Q(I)'+MCI)—\/§(6(D+JZ((D)=O,
OM)=D,e2(2)
with maximal internal of existence [0, T (®y)). Assume that
R<Rpn (@ 8%, [|2®| <e,

where ¢ is the bound of Theorem 3.1. Then T (@,)= + 0.

Proof. — Assume that T (®,) < + oo. Then we have to bound ||2® () ||, ¢f. [W, 1992,
Theorem IV . 5]. The proof of Theorem 3.1 gives

d, ~ =
2170 )20 +v]7 00?50
a.e. in (0, T(®y)). v is a positive constant with y=y(1— /R in (@7, B%), €). In particular

(3.16) JT(%)HQW)H%g?f, e h=|| 7 ®()| 2L (0, T(@y)
0 Y

Theorem IV .2 in [W, 1992] shows that

3.17) ||,@<p(t)|;2+f||m>(r)||2dr

§H9(I>(s)[|2+cJt(|l,/fl((D(r))||2+||.@®(r)][2)dr, 0<s<t<T(®y).
In order to bound || 2 @ (¢)|| we need to estimate || .# (® (7)) || in terms of || 4D (1) || and
|2 ®(v)||. We have (=8¢ +ey+f, -V f=0)
(3.18) 3-(u-Vu=3-((3¢+e¥)- V(3¢ +el)
+f- VB +ey)+(@o+el)-V /)

With an obvious notation we get

(3.19) 8- (8¢ V89)=028¢-V 5@ +add¢p-Vadep+3¢-Vad* 3¢,
(3.20) 8- (80 -Vey)=0°3¢-Vey+3d3¢p-V ey,

(3.21) 8- (V- VoQ)=0%gy- Voo +dey-Vad+ey-Vao*do,
(3.22) 8-(eV-Vel)=0"ey-Vey+dey-Voey.

Observe that in (3.20), (3.22) terms 8¢ -V % ey, gy~ V 8% ey do not occur (c¢f, [W, 1992,
ch. II]). By Sobolev we have

(.23 |2280-Veol|<c|| Voo lco 280 | Scl| 70| 7 @
(3.24 |as0-vasel|<cl|b0llco [V ol <cl| 2 0| 7 @]

if 03¢ contains at most one z-derivative,

>
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and also
(3.29) |89V do||<c||o80]co | VaBo | <c]| 2 0| F 0
if 03¢ contains two z-derivatives (then V3¢ contains at most two z-derivatives).

The latter estimate is due to an improved version of Sobolev’s inequality for x, y-periodic
functions, namely

(3.26) [3¢[co@=cll (=) (-4 e,

i.e. we need only the derivatives d,,, d,,, 02,, 02, to majorize the C° (3)-norm. Correspond-

xz> Yyzs Uxxs Vyy

ingly
(3.27) ¥l co@Scll(—Ap)'* (= A) .
Cf. [W, 1992, (II1.23)] for (3.26), (3.27). Evidently
(3.28) 139V 0%8p||<cl| 20|+ ®].
As for (3.20) we have
(3.29) ||52§<P'V§\I!||§C||52§(P||L~6 @lVev|lLs @
(3.30) Sc||2 |||« || by Sobolev,
(3.31) || 880 Voew||<c||2®| ||« ®| by (3.26).
For (3.21) we obtain, by Sobolev,
(3.32) 1029 V3o || Sc|| & @] V80| co
Sc| o ®||||2 ®|| since (e¥),=0,
(3.33) ||6§\11-V6§(p||§c||§(d)” |2 ®|| as in (3.29), (3.30),
(3.34) ey -Va*do|<c| @] 20|

The second order derivatives of  in 8- (ey-Vey) do not contain a z-derivative, of. [W,
1992, (II.21) and the reasoning below]. If 02, is any second order derivative with respect
to x or y we have, if b,(z), ke Z*\ {0}, are the coefficients in the expansion for |,

(3.35 [%,¥(x, y, 2)|<c Y |b@]|x|?

xeZ\{0}
<c Y llbx|[;’2‘*,2«_(1/2)‘1/2))|K|1/z
xeZ2\(0}
1
NBllEE aj2y, a1 6] DT

l K | (3/4)+(3/8)

by Gagliardo-Nirenberg in one dimension,

S0z (=AU (= AW DM [ (= A2+ 11 yy || 314
by Holder’s inequality with i=1, i=§, i=l,
P 8 p, 8 py 2
S| (= 8 (= AP 4| (= A0 o g

Scl|By[|*ef| @ o 2.
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Concerning (3.22) we thus obtain
(3.36) 18- ¥ VeW) || Scl|BY|| 1 |[(- A2 (= A) ¥ ||| 2 @ |3,

It is now easy to see that

(3.37) 18-(f-V@o+eb)|c||7 @[ 20|,
13- (G +2b)-VN<]|8- G-V N[+][8-E¥-V N
(3.38) <c|2®| || ®||since £+ V f vanishes.

Thus we find
(3.39) [|8-@ Vi)||sc(| L[| 20|+ @] 16| (- A0 2 (- A) ¥ ||| 2 @] /1),

It is easier to prove in a similar fashion

le- @ -Vu)|sc|Z o] 29],

and find corresponding estimates for (d¢ +ey + f)-V3, J

L4

(80 +e¥)- V(3o +el), dxdy,
f o +eV) V(3¢ +eV), dxdy. We arrive at
P

(3.40) A @@)|*Sc(|FO@]Y]|22M|>
+| L @[ (A2 (=AY @ ||| 22 @) || ¥

Substituting this into (3.17) it follows that

;

\||@o<r>|12+j'||mmuZdr

s

N

(3.41) ? gn.@cb(s)n2+cjt[]|§'q>(r)||2||9c1>(r)||2

+e¥* L Q)| |(- AN (=AY @) |2+ (| 2@ (1) "] dr,
0=s<t<T (D).

Applying Hoélder’s inequality for real numbers to the third integrand in (3.41) we obtain

(3.42) ”@(D(t)ﬂ2+Jt|jd®(t)||2dr

s

§um<s>||2+cf 70m|2| 200

s

(AN (— ANV @ || *P |22 (1) || *+]| 2 ® () || 2] dr.

If we want to show the boundedness of |2 ® (¢)|| when approaching T (®,) from below
we therefore have to prove the integrability of ||(—Ayx)"2 (=AW (.)]|2%? at T(®,).
This is done as follows: We apply (—A)~12(—A,)” Y2 to the row for ¢ and (—A,) 1/
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to the row for . This gives

(3.43) B + A O~ RE*O+.M* (@, ©)=0
with

(—A2(=A)Y2 0 0 0 0
0 (-=A) 0 0 0
B = 0 0 PrI 0 0
0 0 0 I 0
0 0 0 0 1

(— A2 (= A )2 0 0 0 0

0 (AW (—A)Y? 0 0 0

A =ol*= 0 0 (=4 0 0 :

0 0 0 - 0

0 0 0 0 -2
0 0 (=A)2(=A)¥2 0 0
0 0 0 0 0
#*=| (-4, o 0 0 0
0 0 0 0 0
0 0 0 0 0

(—A) WA(=A) VDS (u-Vu)
—(=A) Y Pe-(u-Vu)
Pru-V3
.44 M* (D, D)= %, o
(3.44) (@, ®) Wl"‘f Vi dvdy ;
4
|9|-1J u-Vu,dxdy
P

with u=3¢ +ey+/, u= 350+ gy. We have written .#* (®, ®) instead of .#* (®) to emphas-
ize the bilinear character of .#*. The first ® refers to the factors in front of V, the
second to the factors V. Due to Theorem 3.1 we have

(3.45) B*DeL®((0, T(Dy), H),
(3.46) &* ®eL™((0, T(®,)), H).

Now we take a cut-off function with respect to time: Let 0<28<T(®,) and let { be
continuously differentiable on [0, + o0),

£(1)=0, 0518,
L@)=1, r=28.
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Then we obtain

(3.47) 93*(C@)’+&/*C®=\/§(€*UD—C'g«?*(l)—/l’(ctl), ?)=F,

On the left hand side of (3.47) we introduce ((—A)'"2(—A)Y? @, (—A)Y?, 8, £, fo)T
as a new unknown vector-function. Now we use an abstract result in [de Simon, 1964].
It assures that for any r>1 we have

T T
J”@*(@(D)’(r)”'drnLJ PaT
0 0

T
<0 | IFo e

0
T
<el(r, S).T+J | #* (G ® (1), ®(x)||" dx by (3.45), (3.46) and Theorem 3.1,
0
T o~
<elr, 8).T+cj |&* P @) || 2@ (@]
0
by using (3.7), 3.8), (3.12), (3.13), 0ST< T (®,), provided Fe L"((0, T), H). Since
(3.48) [EANE I A g [
we immediately obtain an a priori estimate for
T
J |or* 0@ dr
0
where the bound stays bounded if T approaches T (®,). Since we already know that
T (®g)
J l£* @ (1)]|2dr< + o0
O ¢
we can improve on the exponent 2 in the first step to get r, =2/(1—p). In the second we
obtain r,=2/(1—p)* and so on. Finally we arrive at
d*b=d e N LG, T(®@)), H).

5,0<25<T (®¢),

r,1sr<+w

In view of (3.42) and ||(—AQ* (=AY ()| Zc]| (—‘AN)(—AZ)I/Z\P(T)||§Cllgq)(‘t)”
this proves the assertion. [
Now we deal with the assumption ®e C° ([0, T), 2 (;{)) in Theorem 3.1. We show

ProrosiTION 3.1. — Let @ be a solution of (3.1) over (0, T) as introduced in Section 1
with initial value ®y€ D (). Then

DeCO([0, T], 2 (F)).
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Proof. — Applying (—A)~'2(—A,)™!2 to the first row and (—A,)"/? to the second
row of the Boussinesq-equations, we obtain

(3.49) ®*(1)=e ¥ (0)+Jte‘("°’g(ﬁ@®(c)—,;IZ(CD(G), ® (o)) do

0

with B*=((= &) (= A) 2 0, (=AY, 8, fi, fo)T,

(—A) 0 0 0 0
0 (-Ay 0 0 0
o = 0 0 Prl(-A) 0 0
0 0 0 - 0
0 0 0 0 -
0 0 (—A)WA(=A)YY? 0 0
0 0 0 0 0
&= Pri(-4) O 0 0 0
0 0 0 0 0
0 0 0 0 0
(—A)" D (=A) D8 (u-Vu)
—(—A) e (u-Vu)
u-v34
M (D, D)= |yl_1j E-Vﬁxdxdy
[ d
|W|'1J u-Vu,dxdy
P

Now we apply &/ to both sides of (3.49). We obtain with (u=3¢ +eVy +f, u=350¢+¢y)

(3.50) (-4) f gt (R (- 8) (- 4129 (0)
(AU (=) U5V i) (0)) do
=j'(—A)me-ﬂ-”‘-M(ﬁ(—Az)”z9(0)—(—A2)-<“2>§-(y~vm(o»dc,
0

(3.51) (—ANJte“‘““’“A’“«—A:)'“%-(z-v_q)(c))do

0

- f(‘ A2 e AN (— AP (= 4y) TP e (u- V) (0)) do,

0

(3.52) (—A)f'e-“‘"”“"(ﬁ(—Azm(o)—y-VS(c»dc
0
=f(—A)l-Ple-<'-°><-A>(—A)Pl(ﬁ(—Az)w(o)w-VS(o»dc

]
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for some p, €(0, 1/2) which is to be specified later,
1
(3.53) <—a:>j e“““"‘a%)<—|9|“‘f E-sz.-dxdy>(c)dc
0 4
t
=J (—af)l/ze“"“"'af)<—|9’|"(—63)1/2J E-V;ﬁidxdy>(c)dc, i=1,2.
0 4

Due to the properties of the solution under consideration we have

(—A,)8eC° (0, T}, H),
(.34 { (= A1 (— A, 0)eC° (O, T}, H),
6.5 () 28 @ VW <] a. @ Vwl,
<||o,@o V)| +]|8. (e¥- V|| +]|o.(f Vi) .
<cl|lgo| ||

by using (3.26) for 8,02, 0,079, the estimate ||y||co(ﬁ)§c”;¢®“ and the fact
(€¥),=0. Since (—Ay"2, (=32)** do not involve boundary values we obtain in the
same way

(3.56) (= A2 (A ™42 e- -V || Scl|2 0| || @]
(3.57) ||(—af)1/2j iViadedy||cl|ao||Z |, i=12
2

As for (—A)"* we observe that for p, <1/4 the power (— A)’t does not involve boundary
values. In this case

6.58) |(=ap V8| V@ V9 |sc| 2] | F o).

The kernels in (3.50)-(3.53) have at most the singularity ¢/(t—o)* ~°1. Together with
de -2 0*(0)eC°([0, T], H) (P, €2 (H))), 2 Pe C°([0, T], H) we infer that

4 ®eL®((0, T), H).

Then however the terms in (3.50)-(3.53) are in C*2([0, T], H) for some p,€(0, 1). The
assertion is proved. [J

4. The global existence on the onset of convection for small initial values in the case of
stress-free boundaries. The construction of an absorbing set

We assume here that (a, B, R) is on the onset of convection introduced in Section 2.
The theorem to follow is however also true in the case that (a, B, R) is below the onset.
This is, in view of the proof below, a triviality and does not need further consideration.
We are going to prove
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THEOREM 4.1. — Let (o, B, R) be on the onset of convection. Let T>0, let ® be a
solution over (0, T) of

BO+A DO~ /RED+ .M (D)=0,
4.1 { \/ @
0(0)=2,
under stress-free boundaries. Set ®= (g, V, \/ﬁ S, 1, )N Thefe isane=¢(R, Pr)>0 and
a c=c(R)>0 such that if

12 <&

then |2®(t)||<(1+c)e, te[0, T|. In particular (4.1) has a unique global solution if
[20,]<e.
Proof. — Let us introduce 8= \/ﬁS instead of 3. Then (4. 1) gives

%||@®||2(z)+2||¢&>(z)||2= ~2(M (D (1)), L D)) +2(@ D (1), & D(1))=0

with fb:(q% \j’s g, fl’ fZ)T and

0 0 (=A) 0 0

X 0 0 0 0 0
%:

R(-A) 0 0 0 0

0 0 0 0 0

According to [W, 1992, Prop. IV.1-1V. 3, Proofs of Prop. IV.5, 6] we have
2| # @) |<2M||7 @[ 20
with M =M (a, B, Pr). Evidently
2@, o &)]<2(/ (-85 Ao +R [~ A o] (-2)8])

2
s

5 1 a2, R
=MICEHSP+SlAe+A5 [ (=287 += (1 (-4)) @
1 2

Ais A, >0.
Choosing A, A, such that A2 +2A3 <2, 1/A2 <2 we arrive at

dy " < - R?
Z20IF Oyl 2G| 2M || SO |2 M) [+ (1 (- 4D 0 ) |1*
2

for some y=y(A;, X,)>0. Moreover we have ||.# ®||27||2 ®| for some y>0. Now
choose an £>0 such that 2(1+Q2R*/AZyy))'*Me<y/2. If || 2®,||<¢ and if for some
t,€(0, T] we have || 2 ®(z,)|| 22 €2 +£* (2 R?/AZ ¥), then there is a T, €(0, T] with

2R?

2~
2

[2®(T)|2=¢*+¢>

2

[2®(1)]|2<e*+¢? 22R.,,
A3y

tel0, T))
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since 2 ®eC° ([0, T], H). On (0, T,] we obtain

d, - P R?
—20|?)+=|| L ®@)||2°s—=||(-A
& 2O+l S0P =5«

d, s YV = R? ;
—||2o||?@O)+=||2d0@)||2<=](-A
i s ROl |

= . —t32 2, R _ - eIt ,
4.2) |2®@)||><e~ 21| 2, || +e M sup |[(—A)e ()]
L% VY2 osisTy

by integration,

2R? - .
<82+}\’2 =||2 ®,||* since we are on the onset (cf. (2.4)),
21Y

2
<s +e? 2R

A2yy
This is a contradiction to our assumption. The assertion is proved. [

As it is seen from the proof of the preceding theorem the assumption “(a, B, R) is on
or below the onset” was only needed to show (4.2). In other words, this assumption is
needed to guarantee the smallness of (—A,) o (¢)=u,(z). If this could be done in a
different way, then our assumption can be dropped. What we have done in Theorem
4.1 is to construct an absorbing set for the basin [|2®,[|<e of initial values ®,.
The constant c¢(R), which determines the size of the absorbing set, grows linearly
with R Due to the 1mbedd1ngs we have used when deriving the estimate

Let (a, B, R) be above the onset of convection. This means that
R> Rmin (az’ Bz)

Then, if @ is in the eigenspace of the problem .« ®= + \/Rmin (o, BH) % D, we have

TS T SALVANCE B)wb——wa R 07, )¢ 3.

:*: \/ min (a B

Let E,, E_ be the eigenspaces just mentioned. Let E=E, +E_(E, NE_={0}) and
Pr=1. The orthogonal projectionf onto the space E commutes with .o/ — \/R(g on E.
It is the same case with Z..«/ — /R % and 4 are also reduced by E. Thus we obtain for
a solution @ of (1.5) the equation

4.3)

||g31/2q) ” (t) \/ \/ mm “&{1/2(1) ([)”24_(%((1)) (I)+) 0

\/Rmm b

with @, being that part of ® which is in E,. If ® does not exist for all times then L(z)
blows up at a finite time and the pure conducting state ®=0 (i.e. the motionless state
u=0, $=0) becomes unstable with respect to the particular perturbation ®. If ® exists
for all times we refer to L and E and can follow the method in [K & K, 1973, p. 307}

DO
S
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by using (4.3); thereby one shows that ®=0 cannot be stable with respect to all globally
existing perturbations with wave numbers a, p and Rayleigh-number R.
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Monotonicity and boundedness in the Boussinesq-equations

B. J. SCHMITT and W. VON WAHL *

ABSTRACT. — The onset of convection from the motionless state of the Boussinesq-approximation to Bénard-
convection is studied for both stress-free and rigid boundaries for solutions which are periodic in the horizontal
directions with wave-numbers o and B. The critical Rayleigh-numbers R («, B) for the kinetic energy are
displayed graphically as a surface {(«, B, R(x, B))|o, B>0} in R3. For stress-frec boundaries and small initial-
values it is proved that the position of the point (x, B, R) relative to the onset governs the behaviour of a
generalized energy functional which involves the spatial derivatives of the solution, i.e., below the onset
exponential decay takes place. For (o, B, R) on the onset it is shown that the motionless state is stable in the
sense of Ljapunov with respect to a functional involving even higher order derivatives than the first mentioned
functional. Above the onset it becomes unstable. Throughout the paper, the decomposition of the velocity
field into a poloidal part, a toroidal part and the mean flow is employed as an essential tool.

1. Introduction, notations. The differential operators in the Boussinesq-equations

We consider the Boussinesq-equations (k=(0, 0, 1)T)

v—AutuVu— /R8k+Vn=0, V-u=0,
(1.1 {_ - - - \/— B -

Pr9~A8+Pru-V9— /Ru,=0

for an infinite layer R? x (—(1/2), 1/2) heated from below. Pr>0 is the Prandtl-number,
R>0 is the Rayleigh-number, u, 9 have the usual meaning, and = is the pressure. The
boundary-conditions at z=+(1/2) are the usual ones: Stress-free boundaries or rigid
boundaries. They are explained below. ‘ refers to the derivative with respect to time, and
we also prescribe the initial values u, 9, at time r=0. u, 9 and = are required to be
periodic in (x, y)e R? with respect to a rectangle 2 =(~(n/a), n/ot) % (- (/P), 7t/B) with
a wave-number « in x-direction and a wave-number B in y-direction.

The aim of this paper is two-fold. In Section 2 we give a graphical representation of
the onset of convection. This is a surface in (a, B, R)-space referred to as the onset. Its
equation has been derived rigourously in [Schmitt & von Wahl, 1992, Proposition 2.3}
in the case of stress-free boundaries and in {von Wahl, 1992, Theorem VI. 1, (VI.7)] in
both cases. The onset of convection is characterized by the following property of the
kinetic energy E(¢)=|u(t)||i2q+Pr||9(t) |2y Q=2x(—(1/2), 1/2), at time ¢:

* Lehrstuhl fiir Angewandte Mathematik, Universitit Bayreuth, P.O. Box 101251, W-8580 Bayreuth,
Germany.
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