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In this paper we obtain necessary and sufficient conditions for the validity of the estimate
| Vulle < (| divule + |lcurlullpe).

The constant ¢ does not depend on u. u is a vector field with values in R It is defined on a bounded set G of
R3 or an unbounded one, denoted by G. The boundary conditions are as follows: either the normal
component of u vanishes or the tangential one does. Our conditions are expressed in terms of the Betti
numbers of G or G.

0. Introduction, notation

In this paper the question is studied of the conditions under which it is possible to
prove an estimate (¢ = constant that is independent of u)

Vulle < c(divullps + ||curlu|e). ©.1)

for vector fields u in R3; these vector fields are defined either on a bounded subset G of
R3 or on an unbounded one, say G = R® — G_; Moreover, we assume that either the
normal component (n, u) vanishes on G = 0G or_the tangential one [n, u] does so
and that u(x) — 0 as | x| —» oo on unbounded sets G. Here n is the exterior normal on
0G, G is assumed to be smoothly bounded. [ ., .] is the cross product in R3. As we shall
prove, the validity of (0.1) in the case [n, u] = 0 is equivalent to the vanishing of the
second Betti number of G (respectively, G), whereas in the case (n, u) = 0 the estimate
(0.1) holds if and only if the first Betti number of G (the same as the first Betti number
of G) vanishes. ) R

Since the second Betti number of the unbounded set G always satisfies G > 1 this
means that the estimate (0.1) on G becomes incorrect under the boundary condition
[n, u] = 0. Counterexamples to (0.1) in the cases that first or second Betti numbers do
not vanish are provided by the harmonic vector fields. In the case of a bounded set the
integration exponent p refers to any number on (1, + o0 ), whereas for an unbounded
set p essentially has to be confined to the interval (1, 3). This represents a characteristic
difficulty when dealing with infinite domains.
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For applications of the problems being treated here we refer the reader to [1]. There
the stationary Stokes equations and the stationary Navier—Stokes equations are dealt
with under boundary conditions of three different types:

(i) the velocity is given on a portion I'; of the boundary,
(ii) the pressure and the tangential component of the velocity are given on a second
portion I', of the boundary,
(iii) The normal component of the velocity and the tangential component of the
vorticity are given on the remainder I'; of the boundary.

If, for example, (ii) holds throughout the boundary our result eventually guarantees
the existence and uniqueness of the velocity field of a weak solution of the stationary
Stokes system in W?1:?(G) provided G has second Betti number 0. At least this holds
for W %(G).

As for the method of proof we employ classical representation formulae for vector
fields in R* by means of convolution integrals involving divu, curlu and the repres-
entation of the solution of the stationary Maxwell equations as given by Kress [4].

On these representation formulae we apply estimates with maximal regularity, both
on volume integrals and on surface integrals over 8G. We employ C* spaces, Sobolev
spaces of integer and of fractional order, and when speaking of maximal regularity we
think of the Holder-Korn—Lichtenstein-Giraud or the Calder6n-Zygmund inequali-
ties and their variants and on the trace theorem. This method has been presented in
[7, 8] to which we mostly refer in our calculations.

First we deal with (0.1) for vector fields u being of class C!** with [n,u] =0 or
(n, u) = 0 on 0G, secondly with vector fields having their gradients in L?(G) or L?(G)
and fulfilling the same boundary conditions. This we do by approximating such vector
fields by more regular ones having the property that [ n, u] or (n, u) vanishes on 0G.
This step seems to be of independent interest.

It may be worth noting that (0.1) is evidently true for vector fields in ﬁV“’(G) or
I/OV"”(G), + o0 > p > 1. This is easily seen from the representation

1
u(x) = — —grad, JG div,. u(x")dx’
(

4 &Ix—x
1 1 N
+ rcurlx ¢ ——curl, u(x")dx
n @ 1x—xl
by applying the Calderon—Zygmund inequality. Here u is in CJ(G) or in C3°(é).
We introduce some notation and explain how it is used. G = R? is a bounded open
set of R3, its boundary 3G being of class C*. G has the structure

1

T

1

L

with the components of connectedness G;, G, n G; = &, i # j. Each boundary 3G,
consists of finitely many closed connected surfaces. i is the second Betti number of the
complement G = R® — G: I is the number of handles of G, that is the first Betti number
of G. The complement G then has the following structure:

é = igl éiUém+1’
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with the bounded components of connectedness G,,.. @ and the one unbounded
component of connectedness G,,, ;. Thus m is the second Betti number of G. The sets
G, have properties corresponding to those of the G,. The first Betti number [ of G
equals I This can be shown using Alexander’s duahty theorem. On the basis of
Alexander’s handle model it is possible to construct a basis of the space of the
Neumann fields, that is the harmonic vector fields in G or G with vanishing normal
component (cf. [6] p. 229 and [8] p. 94); in the case of an unbounded set G these
vector fields are also required to tend to zero if | x| - co. The dimension of this space is
I =1, as well in the case of a bounded set G as of an unbounded set G. This is in
principle well known (cf. [3]). However, we need more detailed information, which we
extract from the so-called fundamental theorem of vector analysis: if n is the exterior
normal with respect to G, 7i the exterior normal with respect to G, then we have ([6]
p- 97)

~

1 1 1
u= —grad—(f —diviudx’ + —(n,u)’dQ’>
4\ Jgor Jog T

»

1 1 1
+ curl —<j —curl’udx’ + ——[n, u]’dQ’), (0.2)
A\ Jgr r

JOG

in the case of a bounded set G, and

1 1 .. i 1,
= — grad — —diviudx’ + — —(A, u)’ dQ’
4 ar Jog T

T i
1 1 o1
+ curl — —curl’'udx’ + ——[Aa,u]) dQ’ ), (0.3)
4n \ Jar Jeé T

in the case of the unbounded set G if u(x)— 0as|x| —» co. Here we adopt the following
notation:

1 1
f —div'udx’ stands for J ———div,. u(x')dx
G’ ¢lx —x'|

LG % (n, u)' dQ’ stands for f (n(&'), u(<'))dQ,

1
¢lx—¢'l

and so on, and more generally,

1 1

—f'dx’ meansf )dx
¢’ G|x_x

lf’dQ’ means J — f(&")dQ
oG T |x — &'

and so on. The formulae above hold for all sufficiently regular vector fields u and are a
consequence of Green’s formula. In the case of the unbounded set G we need, however,
a certain asymptotic behaviour of 4 as |x| - oo (cf. [8] p. 103). These formulae
are easily generalized to vector fields having their gradients in L?(G) for some p,
l<p< + owo,o0rin L”(é)for some p, 1 < p < 3. This is discussed later in this chapter
in the case of the unbounded set G. The space of Dirichlet fields, that is the space of
harmonic vector fields with vanishing tangential component, has dimension m in the
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case of a bounded set G and dimension 71 in the case of the unbounded set G. For these
vector fields more or less what was stated in connection with the Neumann fields
holds ([6] p. 212, [8] pp. 124, 191).

We set

or (x, &) U N (e, - =€
— (n(f ), gradxm> = <"(é ) —m>,

xeR3 — 0G, ¢’ €dG. Consequently,

f O™ 40’ stands forf &f(é)dﬂ
oG

on 5a
For

-1 1
a()f ¢’ ) <n(é ) gradé W)

we use the analogous notation.

WLe(G), WLP(G), W~ UrP(dG), W2~ 1/P-P(DG) are the usual Sobolev spaces,
C¥*%(G), C**%(G), C***(dG) are the usual spaces of Holder-continuous functions,
keN U {0},0 < a < 1. When referring to the trace theorem we mean that a function in
W-?(G) or in W'?(G) has a trace u|0G on G = 3G with (1 < p < + )

uldG e W'~ UPP(3G),
110G ly1-1ms06) < clttll gy 0 < cllullying)

on the other hand, each element ue W' ~'/»"?(3G) has a continuation, also denoted by
u,to G orto G or to the boundary strip G,or G , being adjacent to 0G = 0G, lying in
G or G and having the width p > 0, such that (1 <p<+ o)

”u” Wtp( = C”u” wi-ve P(0G)?
”u“ wtr(G) < c|lu|l W= 1ee(3G)
flul wir(G,) <c(p)flull W= Ure(3G)

”u“ WG p) < C(p)”u” Wi lUrr(pG)*

When referring to the Calderon—Zygmund inequality we mean that (1 < p < + )

Whr(G),  feL*(G),

| e <
~ c P %
Ox;0x; L0 (G) LG
0 1 . o A Ay
3 - f'dx’ has its gradient in L?(G) for any fe L?(G) with compact support, and
Xi Jé

< C||f”LP(é),

LP(G)

0? 1
dx’
0x;0x; J i

where ¢ does not depend on the size of the support of f.
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When referring to the Hardy-Littlewood inequality we mean that

”r_l*f”[i([r@ﬂ < c”f”La"(RS),

0<1~=1~+%— 1, 0<i<3, feLi(R?).
P q 3

If we want to emphasize that we are considering a vector field 1 whose components
lic in a Banach space # we write ue %>, If no confusion is to be feared we use simply
2. Kg(0) is the open ball of radius R > 0 around zero in R>.

The reader may observe that the integrals in (0.3) are not always well defined.
Therefore some remarks on the validity of (0.3) are in order. Let u be a vector field with

ue ) WUP(KR(0)nG),
R,R2ZRo>0
and

Vue L*(G)
for some p, 1 < p < 3. Then (cf. [7] p. 21, [8] p. 215)

u + ceLYG), ! = L 1,
qg p 3
where ¢ is a vector field that is constant on the components of connectedness G, of G,
1 <i<m+ 1.¢maybechosenastobezeroonGy, ..., G,. Moreover, we can find a
sequence (4,) of vector fields in W'?(G), being twice continuously differentiable in G,
vanishing outside a compact set, such that

Vi, > Vu in LP(G),

,>u+¢ inLiYG) asv—

(see the proof of Theorem 3.2 in section 3 to follow). For &, the formula (0.3) holds
as is easily seen from [8], Theorem L6.1, p. 184. The Hardy-Littlewood and
Calderén-Zygmund inequalities imply

1 1 . -
grad J —div'u,dx’ —>J grad—div'udx’ in LY(G),
ar & r :

0 1 0
d| —-divu,dx’
gra Lr ivu, dx’ =~

1 A
f grad —div'udx’ in LP(G),
0x; o 0 r

1 1 o A
curl J —curl'u, dx’ —»J‘ curl-curl’udx’ in LIY(G),
ar 2 r

1 -
0 curl 1curl’uvdx’—> J curl —curl’udx’ in LP(G)
0x; ar ox; Jg r

as v - oo. Bvidently

(nu)— (n,u+¢&) in WL=1P2(dG),
[mu]—[nu+é] in W-VPPQRG).
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Thus

1 1
J —(n,u,) dQ" — J —(n,u + ¢) dQ’
G G T

Wlfl/p‘p(aé)
< cl(n,u,)— (n,u+ ¢)| wi-ureagy— 0 as v oo,

and similarly

-0
w2 1ep(3G)

1 1
J [n,uv]’dQ’—f ~[nu+c] d’
oG T oG T

as v - oo (cf. [7] pp. 9-13). By well known estimates for the Dirichlet’s problem in
L?(G) we obtain

GE 1 2 1 a
f ; (n,u,) dQ’ - 0 J A;(n, u+¢)dQ’ in L*(G),
0 a6

0x;0x; Joc r 0x;0x;
0 1 0 1 -
—(n,u,) dQ — —(n,u+¢&)YdQ' in LYG) asv-— owo;
Ox; Jsar ox; Jaar
corresponding statements hold if (n, u,) is replaced by [ n, u,]. Thus we end up with
. 1 1 .. 1 1 s
u+c¢=——| grad—diviudx’ 4+ grad— ——(n,u+c)ydQ’
4n )4 r an Joo 7
1 1 1 1 ~
+— | curl-curl’udx’ + curl-— ——[n,u+ ] dQ". 0.4)
4r Jo r A Jog T

1. The case of vanishing tangential component

We are going to prove the following theorem.

Theorem 1.1. Let meN be arbitrary, but let G have no bounded component of
connectedness. Let ue(C***(G))3 for some 0.e(0, 1). Let [n, u] = 0 on 0G, that is u has
vanishing tangential component on 0G. Then the following estimate holds

Vullprgy < c(ldivulleg + leurluflrg), 1<p< +
where the constant ¢ depends on p and G but not on u.

Proof. 1f G has no bounded components of connectedness, then m = 0. According to
Theorem 1.3.5 in [8] p. 124 the problem

curly =y,
divo = ¢,
—[n0v] =0,

has one and only one classical solution v; here we have set y = curlu and ¢ = divu. Of
course v = u. By Theorem 1.3.3 in [8] p. 113 the quantity ¢* = — (n, u) satisfies on 0G
the integral equation

1 =1 1 ’ !
g* — — oF e*¥'dQ' = —| n, grad B—dx’ — curl y—dx’ . (.Y
2w Jog On 2n ¢ ¢
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The operator I + K with
1 or !
Ke*= — — e*'dQ’
21 Jog On
is the integral operator that governs the exterior Neumann problem, that is the

Neumann problem on G. Since m = 0, the null space of I + K, whose dimension is m
(see [8] pp. 62, 69), consists only of the element zero. Therefore

8/ ’
le*lLree) < < gradj —dx’ curlj y—dx’ )
¢l ¢t LP(5G)

c< gradJ‘ S—dx’ curlf v—dx’ >
G r G r WLP(G)
<c(lle “L”(G) + 1y ”LP(G))

by the trace theorem, which is
by the Calderon—-Zygmund and the Hardy-Littlewood inequalities.
Since

+
LP(0G)

+
WP (G)

a

€, ’ £, L'edG, &'#¢,

el g
or 1 or~t | ln — 7| .

9 ) — s ' < C— 7 ~ 7 ’ ;/: 6” ?,: él,
on P8 e S mimy ey 1T
=& -& | 1, it is well known (see [2] p. 202, in particular {5] p. 74), that
J' or” ¥ Oy
3G on Wim1Pr(3G)

<cle* ”L”(BG),
< c(llelrey + 17 1re)-
According to the integral equation for ¢* we obtain

e* [y ~UnP(3G)

1
gradJ —&'dx’
¢’

W 1-R@G) > ’

1
grad J —g'dx’
Gl
W“’(G))

< C(||3”LP(G) + ly ”L"(G))

by the Calderon-Zygmund and the Hardy-Littlewood inequalities.

C( lelr@ + 17 lLr@ +

1
curlJ —y'dx’
Gr

< C( ||5||LP(G) + HVHLP(G) +

1
curl J —y"dx’
el

by the trace theorem, which is

wi- l/p.P(aG)

+

wWinG)

+
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Since [n, u] = 0 on 0G, the vectors n(&), u( &) are linearly dependent for each £ €0G.
Let

A(E)n(&) + 4,(Eu(d) =0

for some £e€dG with A,(§) #0, 4,(&) = 0. It follows that A,(&) =0, which is a
contradiction. Thus

u(g) = —(n(&), u(&)n(),
=¢e*(&)n(¢), £edG,
ue Wi-1rr(pG).
According to the trace theorem there is a we W'?(G) with
w = u on 9G,
Wl wrne < clwllpi-urepg)
=cllullpr-eree
< clle* | wi-rspg)s
< cllle oy + 17l o)

In particular, we have u — we W' #(G). For any element he W1 ?(G) we have the
decomposition

1 div’ 1 I'h
h= —grad — wh dx’ + curl — eur dx’;
4r o r 4n )¢

¥
from this it follows by the Calderon-Zygmund inequality that

| Vh lLry < c(lldivh ey + |l curlh ”LP(G)),

thus
[V(u—w) 26 < c(ll divw ”LP(G) + fle o) + |l curl w HL"(G) + 1y ”LP(G))’
<clelre + 17 1lLe@y)s
[ Vullrey < cllellr@ + 117 Ir@y + 1 VWl L))
<c(lle ”L"(G) + Iy ||L"(G)),
which is the assertion of the Theorem 1.1. O

If m > 1 Theorem 1.1 becomes false. A counterexample is provided by the fact that
the vector space

Y(G) = {ulue(C**%G))*, curlu = 0in G, divu = 0in G, [n,u] = 0 on 3G}

has dimension m. For this see [8] p. 124. It also follows in the same way by using
Theorem 1.7.1 in [8] p. 192, which is easily seen to be valid also in the case that the
productivities E!, ..., E™ introduced there do not vanish, that

Y(G)={ulue () (C'**G n Kg(0)))*curlu =0inG, divu = 0in G,

R,RZR0>0

[n,u] = 00ndG = 3G, |u(x)| » 0 as |x| > oo}
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has dimension . Since it > 1 is always true it follows that the assertion of Theorem
1.1 becomes false if we replace G by G. To express it in a more precise way: let
1 < p < + . Then there is no estimate

| Vullprg < c(llcurlu || g + [divulleg)
for all

ue () (C*%G N Kz 0))

R,RZRo>0
with
Vue L?(G).
As for the preceding argument we have to make two remarks. The first one concerns

the regularity of the vector fields of Y(G) or Y(G) In [8] it was not shown that they
are in

(€6’ () (€GN Kg(0)’,
R,RZRo>0
respectively. However, if w is any vector field from C!(G) n C%G) with curlw =0
in G, divw=0 in G, [n,w] =0 on 0G, then we obtain with ¢* = — (n, w) that
(I + K)e* = 0 by (1.1). From this we get e* € C* **(0G ) (see [7] pp. 9-13 and p. 2). For
w we have the representation formula (in G)

1

w= — —gradf l1»:*’dQ’.
4n ac T

According to [7] pp. 9-13 and p. 2 we obtain

J % e dQ'| e C**%0dG).
3G

3G
Using

AJ le*dQ’=0
c’

we arrive at we C! “‘(E_}). If we replace G by G the argument is similar since for any
w from C‘(é) N CYG N Kg(0)), R =R, >0 with curl w=0, divw=0 in G,
[n,w] =0, |w(x)] >0 as |[x] » oo on 0G we have (in G)

1 1
grad f —g¥dQ, (1.2)
41t oG T
where again ¢* = — (n, w) on 0G, cf. [8] p. 184. The second remark concerns the

integrability properties at infinity of the elements of Y(G) From (1.2) it follows that
Vwe () Lp(é), we Y(G).
p, toZp>

The reader may observe that in the case that G is the exterior of the unit ball the
space Y(G) is spanned by the vector field x;/|x|, i = 1,2, 3.

[
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2. The case of vanishing normal component

Whereas the case of vanishing tangential component is governed by the second
Betti number, the case of vanishing normal component is completely described in
terms of the first Betti number. We are going to prove the following theorem.

Theorem 2.1. We assume that the first Betti number | of G vanishes. Let u € (C' **(G))?
for some o € (0, 1). Let (n, u) = 0 on 0G, that is u has a vanishing normal component on
0G. Then there holds an estimate. :

| Vullprg < clllcutl u|prgy + |divulrg), 1<p< + o,
where the constant ¢ depends on G and p but not on u.

Proof. According to Theorem 1.3.8 in [8] p. 143 the problem

curl v =y,
dive = ¢,
—(nv)=20

has one and only one classical solution v; again we have set y = curl u, ¢ = divu. Of
course v = u. By Theorem 1.3.6 in [8] p. 126 the quantity y* = — [n, u] satisfies the
integral equation

1[ 1 1
¥+ Ry* = 3| ™ grad J —¢ dx’ — curl j -’ dx/] (2.1
5 ¢’ ¢’

on 0G. Z is the integral operator defined by

1 [ ™1 v
Ry* = — n, curl dQ,
2 Jac r

1 1 1
= n, |:grad —, ¥ ]] dQ,
2n Jo L r

1 ( 1 1 1
=—| (ny*¥)grad—dQ — — J <n, grad ~> ¥ dQ.
2n 3G r 2n oG r

Since

(n(&), y*(&)) grad r™ (£, &) = (n(€) — n(&), y*(&')) grad r (¢, &),

the integral operator # has the property that it can be decomposed into integral
operators whose kernels # satisfy the estimates

|R(E E) <cl|E—E)E#E 2.2)
~ |7 — 7l
R Y— X% < - — N
‘ (’7,5) ("’é)<cmln(|’1_é/lz,ln_§/|2)
A F#EIn—ELli— &< 1. (2.3)

This provides the estimate

I 2Y* | wr-sins6) < €17 | L) (2.4)
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(cf. [5], p. 74). By Hilfssatz 1.3.6 in [8], p. 150 the null space of I + % has dimension
I'=0. Thus

17* | gy < el el iy + 117 1| o))
17* w1 -1er@ey < (€ opgy + 17 1 Loa))
as in the proof of Theorem 1.1. Since
—u(§) = —u(&) — (n(&), u(&)n(é),
= — [n(%), [n(&), u(&)1]
= [n(&), ()], £edG
we can proceed as in the proof of Theorem 1.1 and thus arrive at the assertion. [l
By Alexander’s duality theorem the first Betti number ! of G equals the first Betti

number | of G (in three space dimensions). Thus it is natural to ask whether if Theorem
2.1 remains valid if G is replaced by G. The answer is given by the following theorem.

Theorem 2.2. We assume that the first Betti number I of G vanishes. Let

ue () [C'*%C n Kx(0)T
R,RZRo>0
for some a€(0,1). Let (n,u) = 0 on 0G = 0G. Let 3 > p > 1, and
5 A1
Vue L?(G),ue L"(G),a =

Then there holds an estimate

-
W =

[Vul e < clllcutlulprg + 1 divulzé)

with ¢ depending on p and G but not on u. In the case + o© > p > 3 we assume not only
Vu e LP(G) but also

curlue Lp"(é),

5 -1 1 1
div ue LPO(G)9 ue qu(G), D
do Po 3

for some pgy with 3 > py > 1. Then there holds an estimate

IVl ooy + | Vil o)

< elleurlull o) + Nloutl u |l prog) + 11V u || pogy + [ divul| o)
with ¢ as above. In particular Vu € LP°(G).

Proof. We proceed as in the proof of Theorem 2.1. The integral equation for
y* = —[n,u]is (¢ =divuy,y = curl u)

-1 1 1
* __ * vy r_ il ’
v — Ry o |:n, Jé grad ¢ dx L‘ curl Y dx}
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on G, cf. Theorem 1.8.1 in [8] p. 204 and (0.4). Z is defined as in the proof of Theorem
2.1. By Hilfssatz 1.3.5. in {8] p. 149 the null space of I — # has dimension [ = 0. Thus

™ 1 l
17* 1l Lrpgy < c< _grad —¢' dx’ + J“ curl -y’ dx’ )
JG J LP(BG) G r LP(G)
and
1 1
[ y* | -1imrpgy < € grad —¢’' dx’ + curl -y dx’
w @G) A
G r W= 1rrQG) ‘ G r W= Urp(3G)

by (2.4). Now we choose a boundary strip épo of width p,, lying in G and being
adjacent to 0G = 0G. The trace theorem furnishes

1
J grad —¢ dx’
& r

W1~ 1PR(G)
31| o 1 1
Sc( Y —j grad —¢ dx’ + f grad ¢’ dx’ >,3>p>l,
=|0x; J¢ r L¥G,,) G 4 L%(G,,)
2.5
and
J 1,
grad —¢' dx
G r W1 1253G)
300 1
<c — | grad —¢ dx’
<,-Z‘1 0x; L‘ r L7G,,)
1
+ f grad —¢' dx’ ), + 0 >p=3 (2.6)
G r L7(G,,)

On applying the Hardy-Littlewood inequality we arrive at

1
” J grad —¢ dx’
3 r

<cC

R <clle “Lﬂ(é),
LYG,,)

L¥G,,)

1
J‘ grad ;8’ dx’

G

1 1 2
—=—+-—-1, 1<p<3
p p 3
1 1, .,
grad —¢' dx’ <c|| grad-¢ dx < cllell LGy
G r Lpo(éﬂo) G r Lpn(épo)
1 1 2
—=—+4-—1, + 0 >p=3
Po Po 3

By the Calderén—Zygmund inequality the sums in (2.5) and (2.6) can be estimated by
&l oGy in any case. Then we estimate

1
f curl —y" dx’
& r

in an analogous fashion and continue u |aé = —[n,y*]to épo by means of the trace
theorem. Thus the proof can be completed along similar lines to the proof of Theorem

wi-1ip "(OG)
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2.1. We also see that the zero-order term on the right-hand sides of (2.5) and (2.6) cause
difficulties in the case of an unbounded domain G. O

If I = 1 Theorem 2.1 becomes false. A counterexample is provided by the fact that
the vector space

= {ulue(C***G))® curl u=0in G,divu = 0in G, (n,u) = 0 on 3G}
has dimension . For this see [8] p. 94. It also follows in the same way (I = 1l 1) that
Z(6)= {uw e ) (€6 n KO,
R,RZRo>0

curl u=0in G:,divu=0in5,
(n, u) = 0 on 8G = 3G, |u(x)| - Oas|x| > oo}

has dimension /. _Thus Theorem 2.2 becomes wrong if I'> 1. To express this in a more
precise way: let > 1. Let w be an element of Z (G) For w we have the representation
formula (in G)

1 1
w = — curl J —[n, w] dQY..
4rn ac T

It now follows that
vwe () L#G).
p,to>p>1
In [8] it was not shown that the elements of Z(G) or Z (G) are in
(C*G), () (C'GC n Kz (0)),
R,RZRp>0

respectively. However, if w is any vector field from C(G) n C*G) with curl w = 0 in
G,divw =0in G, (n, w}) = 0 on 0G, then (I + #)y* = 0 with y* = — [n, w]. We can
expand the kernel of Z in the same way as we did for K in [7] p. 12. Thus we obtain
y* € C1**%@G). Using the formula (in G)

1 1
w= ——curl J —y*.dQY
4z Gt

we can conclude as_in section 1 to show that Vwe C'*%G). The case of the
unbounded domain G is treated in an analogous way.

3. Final results
In this paragraph we extend the previous results to vector fields in (W' P(G))® or
(WP(G))® with
WUr(G) = {ulue () (WG~ Kg(0))’, Vue LP(G)}.

R,RZRo>0

Our first result is
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Theorem 3.1. Let + o0 > p > L, ue(WHP(G))?, [n,u] = 0 on OG in the sense of the
trace operator. The estimate (c independent on u)

| Vil Loy < clllcurl u | 1oy + I1div ulfLo) (3.1

is true for all u as above if and only if G has second Betti number 0. Let p be as above,
ue(WHt?(G))3, [n,u] =0 on 0G in the sense of the trace operator. The estimate
(¢ independent on u)

[Vullprg < c(lcurl ullpg + Idivull =) (3.2)

is true for all u as above if and only if G has a second Betti number zero, that is (3.2) is
false since G always has a second Betti number greater than or equal to one

Proof. In view of section 1 the only thing we have to do is to approximate an element
u of (W' ?(G))® with [n, u] = 0 by elements u, as employed in section 1. Let g be the
dual exponent to p. Let h e W' %G). Then there is a sequence (h,) with h, € C¥(G),
h, —h, v— oo, with W 9G). We have

(Vh, curl u) = lim (Vh,, curl u)

v oo

= lim f (Vh,, [n, u]) dQ = 0.
oG

Aamd ¢l

Let v € (L%G))*. Taking its Helmholtz decomposition v = Vi + P,v with he W' 9(G)
and with P, being the projection of (L%G))* onto its divergence-free part we arrive at

(v, curl w) = (Vh + P v, curl u),
= (P4, curl u),
= (v, P} curl u),
= (v, P, curl u),
curlu = P, curlu

(cf. [7], Theorem 4.1, p. 18). According to [7], Theorem 5.1, p. 24 there is a sequence
(y,) with

7, €(CE(G),veN,

divy, =0

y, = v = curlu in (LP(G))}, v » .
We also choose a sequence (g,) with

e, € C3(0),

g, > ¢ =divuin L?(G), v > .

Let u, be the solution of the problem
curlu, = y,,

divu, = ¢

v

— [n,u,] =0.
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Since G has a second Betti number m = 0 this problem has one and only one solution
u, from C*(G) n C*** (G) (cf. [8], p. 121, Theorem 1.3.4]), 0 < « < 1. u, has the
representation (¢¥ = — (n,u,))

1 1 1 1 1 1
u,= —-—grad | —¢,dx’ — —grad | —&¥dQ + curl— | —y,dx".
4n T 47 o6 T 4r |or

For u we have (¢* = — (n,u))

1 1 1 1 1 1
u= —-—grad | ~¢'dx’' —-—grad | —-¢dQ" + curl — | -7y’ dx".
4n " 4n oGt 4n o1

By Kellogg’s theorem

1 —
J ;e’v dx’ e C2**(G),
G

1 _
J ;y’vdx’ e C***(G).
G

For ¢* we have the integral equation (1.1). Therefore e¥ € C' *(3G) (cf. [7] pp. 9-13
and p. 2). As was pointed out at the end of section 1, the term

1
j —e¥ dQ’
"

is therefore in C2**(G). Consequently

u, e C***(G).
By the Calderén-Zygmund and Hardy-Littlewood inequalities we obtain

1 1
gradJ —&,dx" — gradf —¢'dx’ in WhP(G)as v > o0,
¢t ¢t

1 1
curlJ —7,dx" — curlj —y'dx’in W¥P(G)asv —» 0.
¢l T

The estimate for | &* | - 1nrpg in section 1 implies that
e* > ¢¥in W1 VPP@G)asv > o0

namely, it is easily checked that ¢* fulfills the integral equation (1.1) by following the
lines of the proof of Theorem 1.3.3 in [8] p. 133 (Observe that

1 1
gradJ —¢' dx/, curl'[ -y dx’,
T ¢l

when restricted to 0G, are in W'~ 1/??(3G)). The expressions

1 1
J —sf’dQ',f -e¥ dQ’,
oG T oG T

when restricted to 0G, are in W2~ 1/P-7(0G) and fulfill the estimate (cf. [7] pp. 9-13),

1 1
J —e¥ dQ’ — J —g* dQY
oG T o T

< clle¥ — ¥l pi-vnrpgy-
W1 (G)
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On using the well known estimate for harmonic functions in W?2'?(G) we arrive at

1 1
J —e¥dQY —-J —e*¥' dQ’
IR oG T

The theorem in question is proved. |

< clley — e* [l wr-rmee)
WZ»F(G)

Next we deal with the case of vanishing normal component. Our result then is

Theorem 3.2. Let + o > p > 1. Letue (W'?(G))3, (n,u) = 0 on OG in the sense of
the trace operator. The estimate (c independent of u)

Vull 1oy < c(llcurlu|| pogy + [Idiv ull 1(g)) (3.3)

is true for,all u as above if and only if G has a first Betti number of zero. Let 3 > p > 1,
ue(WHP(G) L ue LUG),q ' = p~' — %, (n,u) = 0 on 0G. The estimate (c independ-
ent of u)

IVullrg < clllcurlull g + [1divull ) (3-4)

is true for all u as above if and only if G has a first Betti number of zero. Let
+ 0 >p=3,

ue (WH(G))? n (WhP(G)),

ue L°(G),q5' = py* — L, for some py- 1 < p, < 3. The estimate (c independent on u)

Vull o) + [1Vull gy < c(llcurl ull o6y + llcurl ufl =)

+ ” divu ” L#(G) + ” divu “ L""(é)) (35)

is true for all u as above if and only if G has a first Betti number of zero.

Proof. First we treat the case of the bounded domain G. We choose a sequence (4,)
with i, € (C*(G))?, 4, > u in (W"?(G))* as v - oo. The vector fields curl &, are of
class C!(G) and free of productivity. Set y, = curli,., y = curl u. Next

j edx =0withe=divy, i=1,...,m,
Gi

since (n, ¥} = 0 on 0G. We choose a sequence (g,) with

&, € C3(G),
f g,dx =0, veN,
G

g, > ¢in LP(G)as v - oo .
Let u, be the solution of the problem
curlu, = y,,
divu, = ¢,

— (n,u,) =0.
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Since G has first Betti number / = 0 this problem has one and only one solution u,
from C*(G) n C***(G) (cf. [8] Satz 1.3.8, p. 143),0 < a < 1. u, has the representation
(yt = - [n9 uv])

1 1 1 1 1 1
u,= ——grad | —¢g,dx' +curl{ — | —-y,dx"+—1 —y¥dQ').
4 ¢l 4n s r 4n g1
For u we have (y* = — [n,u])

1 1 1 1 1 1
u= ——grad | —&dx" +curl| — | —y'dx"+—1 —y*¥dQ ).
47 el 4r | r An Jo 1
Again by Kellogg’s theorem
1 1 ’ ’ 2+ ~
—¢g,dx', | —y,dx e C*T*(G).
G’ g’
For y¥ we have the integral equation (2.1). Evidently

1 1
Ry = — | (n,y*)grad-dQ’' + Ky¥, (3.6)
21 Jag r

where Ky* is taken componentwise with respect to y¥. This gives Ky¥ € (C! **(3G))?,
cf. [7] pp. 9-13 and p. 2. As for the first integral we have

1
(n(&), v*(£") (grad ;) (&<

1
= (n(d) - n(i’),?*(i’))<gradr>(f,f’)- (3.7)

Now we expand n(¢) — n(¢’) in local coordinates into a Taylor polynomial with
remainder term in integral form, just as we did for the kernels

o1 NER! ,
(5;;>@,¢x<aWr>(ac)

in [7] pp. 12-13 which gives (as in [7] pp. 9-13 and p. 2

‘[ (n,y*) gradldQ’ e (C***(0G))3.
3G r

As in the proof of Theorem 3.1 we arrive at u, € C! **(G). It is easily checked that y*
fulfills the integral equation (2.1). The estimate for the term || y* || y1- 1150y in section 2
shows in the same way as in the proof of Theorem 3.1 that

y* > y*in W-1PP@G)as v —» .

For the remaining part of the proof of the first assertion of the present theorem we
refer to the proof of Theorem 3.1. As for the second assertion we choose for
ue (W'?(G))® a sequence (ii,) with

de () (CHG A Kg(0))

R,RZRo>0
#,(x) =0, |x| =2 R,,, forsome R,,, > R, > 0,

Vi, > Vuin LP(G) as v —> 0.
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This is done as follows: on the bounded components of connectedness G, 1 si<m,
this is no problem. On the single unbounded component of connectedness G,,, ; we
have
A P D |
ue LG, ) with - = - — =
qg p 3
(observe that 1 < p < 3). Next we choose a sequence (R,) of positive reals such that
Ry <R, <R,;{,veEN,R, » w0 asv—> + o0,

R3+1 - R\? < (Rv+1 + Rv)2 <
3 S
(Rv+1 - Rv)3 (Rv+1 - Rv)2

veN. (3.8)

For each v € N we can choose a function {, with {, being continuously differentiable
onG,,,,0< <1,

LIKR (0) N G) = 1,4 (Gpyy — Kk, ,(0) =0,
lVCv| < c/(Rv+1 - Rv) on

Gp+y N Kg 0) = Gpiy N Kp (0),
ve N. Then (i = 1,2, 3) it follows that

0

ox;

i

0 Ou
(Cvu) = a_xinu + Cva

i

on G, ,- Since u is in LYG,,,,) we have

0 p /a1 1/q2
J“ — dx < <j |V, P9 dx) (J |u|Pez dx>
Gpst 2, 2,

Ox;

4y = qp g, = qp J@p™ ' — 1), D, = Gpyy N Kg, (0) — Gpiy 0 Kg (0).
Thus pq, = 3,

Cou

with

f V(1P dx < ¢, veN,
by (3.8). As

J [ul?dx - 0, v— oo,

2,

we see that

V(¢,u) > Vuin LP(G,.,), v— .

{,u can be approximated in W1 -?(G,,, N Kg,,, (0)) by

Gri1 0 Kg,,, (0)

vector fields #,, which are twice continuously differentiable in G,,, , N Kg, ., (0) and
vanish near 0Ky _ (0). Let us set

y, = curld, in G,

e, =divd, in G, ,,
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whereas on (3,-, 1 < i < m, we choose a sequence (¢,) as in the first part of the proof.
Let u, be the solution of the problem

curlu, = y,,
divu, = ¢,
— (n,u,) =0.

Since G has first Betti number [ = 0 this problem has one and only one solution u,
with

we () L6 A (CHG N Kr(0)? A (CHHG)F (LG,

e ) (LG A (CHG A Kr(0)) A (L2(G), j=1,23,

>

for every 50 €(0,%) and for every o, 0 < a < 1 (cf. [8], Theorem 1.8.2, p. 205). For u,
we have the formula

1 1 1 1 1 1
= —— e, dx 1 — | —7.dx’ +— | —y¥dQ
u, 4ngradJ‘Grevdx + cur <4n L*ry” X +41th‘ryv )

with y* = — [A,u,], and y}¥ satisfies the integral equation

1 1 1
¥ — Ry = El:ﬁ’ grad L;s’v dx’ — curl Jé;y’v dx’]
with # defined by (3.6). As before we arrive at

e ) CG n KRl0),

uv
RR2Ry,>0
y* = — [A, u] that, owing to the restriction3 > p > 1, satisfies the integral equation
1], 1, 1
v* — By* = —| A, | grad—¢'dx’ — | curl-y dx’ 3.9
27 é r é r

(cf. [8] proof of Theorem 1.8.1, p. 204) and, again owing to the restriction 3 > p > 1
(cf. the proof of Theorem 2.2), y¥ — y* in W' 1/»P(0G) as v > o0.
Since 3 > p > 1 one can show that

t 1 1 1
u= —— | grad-¢dx’ +-—curl | =y dx'
4z |a r 4n ar
1 1 . .
+—curl | —y*dQ with e =divu, y = curlu (3.10)
4n oG T

(cf. the proof of (0.4) in section 0). Employing the Calderon-Zygmund inequality we
obtain (i = 1,2,3)

1 0 1 -
—gradj —g,dx’ — J grad—¢' dx' in LP(G) as v —» <o,
ar ox; Jg r

1 0 1 A
curlJ —y,dx" — -—f curl -y' dx’ in LP(G) as v —» 0.
Gr 0 5 r
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The expressions

1 1 1 1
L Lwae, L Lyrao
4r Jagr h 4r LG' Y

are in W2~ YP-P(3G) and (cf. [7] pp. 9-13)

1 1
f —y;“’dQ’—J ~y* dQy
G T aG’r

Since the components of

1 1
J A—y;“’dQ’,J Awy*’dQ’
oG T aG T

are harmonic functions we arrive at

02 1 1
—y¥dQ — | —y¥dQ .
0x;0x; \ Jog r oG L?(G)

cly¥ = r*lwr-imegg, 1<i,j<3

< clly¥ — y*llwr-rpg)-
W2-1npRG)

Thus R
Vu, » Vuin LP(G)as v - .

Since for Vu, the estimate in question holds, also the second case of the present
theorem is settled. As for the third case, it is essentially a consequence of the second
one, since (3.9), (3.10) are at our disposal. We can then proceed as in the proof of
Theorem 2.2. O

In connection with Theorem 3.2 it is natural to ask whether a vector field u with

ue () WUP(G n Kg(0),
RR =R,
has its gradient in L”(é), provided that divue L"(é), curlue L”(é), u+ce L“(é),
g=00nG;1<i<méconstanton G,.,,1 <p <3,4°" =p~' — }(no restric-
tion on the Betti numbers of G). Setting e¢* = — (A, u + &), y* = — [A,u + ¢] we
have e* ¢ W1~ 1P-P(3G), y* € W'~ 1P-P(QG). As in section 0 we derive the representa-
tion

1 1 1 1
u+é= —{-—1 grad~¢dx + —grad | -¢e*dQ
4n ¢ r 4 oG T

1 1 1 1
+{— | curl-y'dx" + —curl | —y*dQ’}.
47 ¢ r 4n G T

Using the Calderén-Zygmund inequality we arrive at Vu e L"(é).
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