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0. Introduction and Notations

Let there be given a solenoidal vector field u over an infinite layer (z,y,2) €
R? x (a,b). u is assumed to be periodic in z, y with respect to a square or
a rectangle. We prove here that u can be decomposed in a unique way into

(k=(0,0,1))

(0.1) u(z,y,2) = curlcurlp(z,y,z)k + curly(z,y, 2)k + F(2)
= P(z,y,2) + T(z,y,2) + F(2).

P = curl curl ¢k is called the poloidal part of u, T = curlk is the toroidal
part and the field F', which depends on z only and has constant third compo-
nent, is the mean flow. ¢, ¢ are functions which are determined uniquely if
we require them to have vanishing mean value over a periodicity cell P. P+T
is then nothing else but that part of u which has vanishing mean value over P.
A corresponding decomposition was already derived in [1,2] in the case of a
spherical layer. In this situation it turns out that the mean flow is not needed,
ie. F=0. In [5, p. 236] an attempt was made to decompose u into P+ T in
our situation, on u = (uz,uy,u,)T the condition fpu.(z,y,a)drdy = 0 was
imposed. This is however not sufficient as it is exhibited by the mean flow (cf.
the Remark in section 1). In fact [pu,dedy = fpuydedy = [pu,dzdy =0
is needed. The exact result concerning the decomposition (0.1) can be seen
from Theorem 1.4 to follow. P, T, F can be understood as orthogonal pro-
jections from the L2-space of periodic solenoidal fields (in a sense which is
made precise in Theorem 1.4) onto three pairwise orthogonal subspaces. The
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regularity properties of these projections in terms of L2-Sobolev spaces are
studied also in Theorem 1.4.
The decomposition 0.1 is now applied to the Boussinesq-equations

(0.2) v —Au+u-Vu—VRIE+Vr = 0, V-u=0,
' Pr —AY+Pru-V9—+vRu, = 0

over the infinite layer R? x (—1,1). Pr > 0 is the Prandtl-number, R > 0 is
the Rayleigh-number, u, 9 have the usual meaning, 7 is the pressure. The
boundary-conditions at z = :i:% are the usual ones: Stress-free boundaries or
rigid boundaries. They are explained in section 2. .’ refers to the derivative
with respect to time, and we have also to prescribe the initial values u,,
Yo at time ¢t = 0. u, ¥ and 7 are required to be periodic in (z,y) with
respect to a square P = (—1'- Z)? with wave-number a in both directions;

o
the generalization to P = (—7%,%) X (—%,%) is at hand and does not need
further consideration. When applying (0.1) to u as above the boundary
conditions on u go over into equivalent ones on ¢, ¥ and F. Moreover,

F3 = 0. The system (0.2) itself is transformed into an equivalent one for
= (p,¥,9, F1, F3)T. It has the form

(0.3) BY + A® -~ VRC® + M(®) =

with matrix operators B, A4, C and a nonlinear term M. A, B turn out to

be diagonal and strictly positive definite selfadjoint operators in an appro-
priate H1lbert space H. H is simply the product L} (Q) >< L3,(92) x LY(Q) x

(Ly((—3,3 L)))? or L2,(Q) x L3,(2) x L) x (L2(( X L)))? for stress-free
boundaries or rigid boundaries with @ = P x (—1,1). The subscript . in-
dicates that ¢, 1) have vanishing mean value over P, whereas F is required to
have vanishing mean value over ( -3, 7 ) in the case of stress-free boundaries.
The pressure is eliminated. Whereas the necessity of (0.3) is easy to show,
the proof of the sufficiency throws some light on the mean flow. While it’s
possible to solve (0.3) in a reduced form, i.e. without mean flow (this is even

easier), it’s not possible to obtain back (0.2) from (0.3) in this case unless
(0.4) /P(P+T)x P, dzdy = fP(P+T)y P, dzdy = 0.

(0.4) holds if ¢, ¢, ¥ exhibit certain symmetries. We refer for this to [3,
pp. 347, 357].

Of course one can try to eliminate Vr in (0.2) by using the classical tool
of projecting L(§2) on its divergence-free part. This has been done by Iooss
in [4] for rigid boundaries. Therefore some remarks on the advantages of




(0.3) are in order. While the projection @ just mentioned is a nonlocal op-
erator and therefore yields a nonlocal nonlinearity Q(u - Vu) when applied,
the main part of M(®) is purely local. There is only one nonlocal part in
M(®). It occurs within the subsystem for the mean flow and consists of
(fp(P+T) -V(P+T)g, dzdy, [p(P+T)- V(P +T),, dzdy). In particular
it’s possible to study (0.3) within various subspaces which are invariant un-
der the nonlinearity and to subject (0.3) to a numerical analysis. This was
almost exclusively done by physicists. We refer for this e.g. to the paper [3,
sections 2, 4]. The mathematical background for (0.3) is treated in detail in
[6]. In the present paper we review in section 2 some results of [6]. (0.3) may
also be used to study the regularity behaviour of & near ¢t = 0 by imposing
suitable compatibility conditions. While this question may be of more math-
ematical interest, the problem of energy-stability is not. Due to the fact that
the highest order derivatives of u, = (=Az)p, A, 1= 02 + BZ , are isolated
in the first row of (0.3) and the pressure is eliminated at the same time, a
calculus estimate already yields the precise bounds in the case of stress-free
boundaries.

We introduce some notation. A vector field u or F' is usually written
as a column, ie. u = (uy,ugu3)’ = (Ug,uy,u,)t, F = (F, Fy), F3)T =
(F,,F,,F,)T with the symbol .T for transposition. H'(Q) = H"*(Q) for
any open set {2 of R" are the usual Sobolev spaces of integer order [ > 0. In
section 1 we will also introduce the Sobolev spaces H) of P-periodic func-
tions in the plane with exponent of integration 2. If (a,b) is an open interval
on the z-axis, then

W¥((a,b), Hp)

consists of the mappings f:(a,b) — Hp with 0?D% f € L*((a,b),Hp) =
L*((a,b),L*(P)) for any integers p,q > 0 with p < k, ¢ <land p+ ¢ <
max{k,}. D2, stands for any derivative of order ¢ in the periodic variables
z,y. W¥((a,b), Hs) becomes a Hilbert space in the usual way. A selfadjoint
operator A in a Hilbert space H is called strictly positive definite iff (Au, u) >
~v|[u||?, u € D(A), for some v > 0. C*([a,b],H) is the usual space of k-times

continuously differentiable functions on [a, b] with values in the space H.

1. A poloidal-toroidal representation for pe-
riodic solenoidal fields in an infinite layer

We want to explain how a solenoidal vector field u defined in the three-
dimensional layer L = R? x (a,b) C R® can be represented in terms of




poloidal and toroidal fields
P(z,y,z) = curlcurl ¢(z, y, 2)k, T(z,y,z) = curly(z,y, 2)k

if u and the flux functions ¢, ¥ are assumed to be peI‘IOdlC with respect to
the first two arguments.

For simplicity we restrict ourselves to the case where the lengths of the
periods in z and y are equal. Moreover we will deal only with the exponent
of integration 2. Thus let us set P = ( —n, 7 )? and consider the Hilbert space
L} consisting of all quadratically integrable (complex valued) functions on
P which we will regard to be extended into the whole plane R? periodically.
Given two functions f, fs € L} we will call f5 the weak B-th derivative of f
in the sense of periodic distributions in R? iff

1) [ fole,v)é(e,y)drdy = ()P [ f(a,y)D%(z,v)dedy V6 € C,
where
Cy = {¢ € C*(R?, C) | ¢ periodic in = and y with respect to 73}

denotes the space of the P-periodic testing functions. We will then write D? f
instead of fs. Further we define the following Sobolev spaces of P-periodic
functions:

HP = {f € L2 | DPf € L% in the sense of (1.1) V|| < m}

endowed with the norms

1flp = (X [D?F]

18l<m

)1/2, m € Np.

L2

Consider now our main device in such spaces, i.e. the Fourier expansion.
Assume

flzy)=2n)' Y aee™@Y)  in [,
KEL?
If there exists D°f € L% in the sense of periodic distributions in R? we will
infer from (1.1) by using the testing functions exp(—ix-(z,y)) that a,(ix)?

are the Fourier coefficients of DPf. Therefore it is easy to see that || f 5 m

2 2; _2m\1/2 . : m . .
and (|a0| + Xrzo lax| |K] ) define equivalent norms in HZ'. Especially it

will suffice to show the convergence of this series in order to prove f € HZ
for some f € L3.




Let @ = P x(a,b) denote the three dimensional box built over the period
rectangle P. For f € L*((a,b),L%) let

(f), = fpf(:v,y,z) dz dy

be the normalized mean value over P. Finally let us introduce A, := 82+ 072,
the Laplacian in two dimensions in each hyperplane R? x {z} of the layer L.
This differential operator will arise as —{curl curl( . k), k) when multiplying
a poloidal field and the vector k.

Thus we start with some considerations on this operator.

Proposition 1.1:

a) Let f € L%. The problem Aju = f (in the sense of periodic distributions
in R?) admits a solution u € L3 iff (f) := fp f(z,y)dzdy = 0. u s
uniquely determined by its mean value (u). If (u) = 0 then the estimate
”u”’P,O < ”f”P,o is valid.

b) If f € HE, then u € HF™, and u can be estimated via the inequality
[ullp msz < c(m)(fullp o+ 11 fllpm)-

¢) LetG bea domain inR™, and X — f(-,A) € C*(G, HF ) with (f(-,A)) =0
VA € G. Then the zero mean valued solution u(-, ) of Ayu(-,A) = f(+,A)
V\ lies in the space C*(G,HE'?), and for all X € G, |B] < k, the
pointwise estimate ”Dgu(")‘)”p,mn < c(m)“fo(-,)\)”pm holds true.

PRrooF:

a) Let u, f € L% satisfy Ayu = f in the sense mentioned above. Let (ax)ccz2

be the Fourier coefficients of u. As explained in the preliminary examination

(—ax|k|*)xezz turn out to be necessarily the Fourier coefficients of f. Thus,

(f) = (—(27) 'a,]k|*),_o = 0. Further, ay, x # 0 are uniquely determined

by f, whence u will be also unique if f and ag = 27 (u) are prescribed.

On the other hand, if f is given by Fourier coefficients (b, )xez2 and by = 0,
the function

—bn k(T —
u(z,y) = (27r)_1 Z S IATEY (27) Ly

2
K#0 |"€l

obviously defines the required solution of Aqu = f with mean value (27) a,.
b) As f € HF means that }°, ., |b.)%|6[*™ < oo, the fact a, = —b,/|&|* for
k # 0 implies

laol* + 3 laxl*|w[*"** = Jaol* + 3 [ba[*|s["" < oo,
r#0 K#0




ie. u € HF*? and the asserted estimate.

c) If (u) = 0 we get ag = 0, thus b) changes to [Ju]lp ., < c(m)|| fllp -
Apply this to the difference u(-, \) —u(-, \') in order to obtain (X - u(-,))) €
C(G, HEF*?). Now apply the same estimate to

1 5
7 (105 20 + hed) = u(, X)) = wag,

where uy, , shall be the solution to D f(-, A\g) with mean value zero. It follows
that A — u(-,\) admits partial derivatives at the point )\q. The assertion
will then result inductively. a

Remark. In c) we may replace C*(G, HE) by its completion H*(G, Hy)
2

with respect to the norm |jull = (Zi5<k fo HDf\’u(, )\)Hpm d\)Y2, or by the

space W¥(G, H') mentioned in the introduction. In the latter case the point-

wise estimate reads

[Dgu, W], ., < DDEFCN],

P.i+2 —
for all j < m and |B| < k with |8] + j + 2 < max{k,m + 2}. In the rest of
this section we will use WF instead of the more natural H* because W* is
needed in section 2.

Ifin a) the right hand side f is real valued, then the solution u will also be
real valued, provided its prescribed mean value belongs to R, too. In fact, we
might as well make use of the Fourier expansion in terms of cos(x+(z,y)) and
sin(k-(z,y)), thus we would stay properly in real function spaces. However,
this would not be as handy as the present notation.

For shortness we introduce the abbreviations

5, 8,0,
g=curl(.k)=| -0, |, &:=curlcurl(.k)= 9,0, |,
0 ~A,

these operators are intended to act on functions defined in L.
Using Proposition 1.1 we obtain at once a result for the problem A,u = f
in the layer L.

Corollary 1.2: Let f € W¥((a,b), HF) with (f), = 0 V'z € (a,b). Then
there exzists ezactly one u € Li, ((a,b),L3) satisfying (u), = 0 V'z € (a,b)
and Aqu = f in the sense of periodic distributions in L, i.e. when using
testing functions ¢ € C(L), that are periodic in = and y with respect to P




and vanish near the boundary (R x {a})U(R? x {b}). The solution u belongs
to W*((a,b), Hp*?), and the following inequality holds true:

(1.2) 107 ullp 42 < DI fllp,;

Vz, 3 <mand v < k with v + j + 2 < max{k,m + 2}. In particular
we get eu € W*((a,b), HZ*). If k > 1, then (§u); € W*Y((a,b), Hpt)
for i = 1,2, and (§u)s € W*((a,b), HE). All corresponding norms can be
estimated with the aid of (1.2). Moreover eu and fu have zero mean values.

PROOF: As f € W¥((a,b), HF) implies that the Fourier coefficients b(z)
belonging to f lie in H*((a,b)) and that the z-derivatives of f may be calcu-
lated termwise, the maintained existence and uniqueness as well as regularity
result readily from Proposition 1.1. Expanding eu and éu into their Fourier
series we see that the coefficients of order zero vanish whence so do their
mean values. ]

The next lemma reveals the sufficiency of some necessary conditions to
the flux functions ¢ and ¢, which will be derived from an assumed poloidal-
toroidal decomposition in the main theorem named after the lemma.
Lemma 1.3: Let V = (V},V,,V3)T € L¥(a,b),L%)® with (V), =0 V'z €
(a,b) satisfy (k,V) = 0, divV = 0, ¢ -V = 0 in the sense of pertodic
distributions in L. Then V =0 in L*((a,b),L3%).

PROOF: Put V3 = 0 into the presumed condition

"

/}/(V, V¢)dzdydz =0 = /ﬂ(v, &€ dz dy dz,

((z,y,2) = y(2)d(z,y) with v € C§(a,b), ¢ € CF, in order to get the
equations

(13) 4,(gu,yww,y,mg—j@,ym,y,z)) drdy = 0

(1.4) /Rf (g—i(w,y)%(m,y,z) - g—:i(:c,y)%(x,y,z)) dedy = 0

for all ¢ € C3 and almost all z € (a,b). Choosing in particular ¢ = gf; in
(1.3), ¢ = 5= in (1.4) and adding (1.3), (1.4) we obtain

(1.5) A(’ Az, y)Vi(z,y,2z)dedy =0 VEe Cy.

Hence, by means of Proposition 1.1, Vi(z,y,2) = ¢;(z) does not depend on z
and y. Analogously take ¢ = %5 in (1.3), ¢ = 2 in (1.4) and subtract to get
(1.5) with V; replaced by V; whence as above Vy(z,y,2) = ca(z). Recalling
that V should have mean values zero we are set. o




Remark. The zero mean value assumption must not be removed, because
otherwise it would be impossible to exclude the case

Vi(z)
Vz,y,2) = | Valz) | .
0 .

In fact, every such V (being smooth enough) serves as an example for a
solenoidal field with vanishing third component and ¢ - V = 0, but which is
not identical to zero.

The following theorem describes the correct representation of a solenoidal

field u in the layer L = R? x (a,b).

Theorem 1.4: Let u = (uy,us,us)” be a vector field defined in the layer L,
the components of the field w shall satisfy ui, u; € W¥((a,b), HF*') and
us € W((a,b),HR), k, I, m, n € Ng. Assume divu = 0 in L. Then there
ezist fields P, T, F € L*((a,b),L3%)? that are determined uniquely by their
following properties:

P =y, T=¢y

(in the sense of periodic distributions in L) with zero mean valued functions
v, ¥ € L*((a,b),L}),

F(z,y,2) = (Fi(2), Fy(2), F3)

independent of x,y, and
(1.6) wu=P+T+F
Especially, F(z) = (u), € H¥((a,b))®. Moreover o € W (( a,b), Hpt?),
Y € WH((a,b), H3*?), and the estimates
1970(, 2)lp 42 < (N0 ua(:, 2)lp

forj <n, 0<v<I+1withv+j+2<max{l+1,n+2} and

1074 ( p 2 < cDINOY & u(:, 2)lp,

for j <m, 0 <v <k withv+j+2 < max{k,m+2} are valid. The regularity
of P and T is inferred by that of ¢ and .

PROOF: Because §p and g3 have zero mean values (cf. Corollary 1.2), we
get (u), = F(z) necessarily. Then F3 = const follows from divy = 0. Thus
let us consider v — F instead of u and assume now that F = 0, 1.e. u has
mean value zero.




It is evident that for any toroidal field T = g% the conditions divT = 0,
e-T = Ay, (k,T) = 0 must hold true. Analogously divP =0, ¢-P =0,
(k, P) = — A, for any poloidal field P = §p. Therefore the claimu = P+T
implies that ¢ - T = ¢ - u and (k, P) = (k,u). Thus by means of Lemma 1.3,
P and T have to be unique. Moreover we see that necessarily

(1.7) —Dgp = (ku), —Dpp=-—c-u

for the flux functions ¢ and . These equations can be solved in a unique
way, as indicated by Corollary 1.2. Once that ¢ and ¢ have been determined
according to (1.7), we may apply Lemma 1.3 to u — P — T. (Note that now
u is assumed to be zero mean valued!) Thus we obtain u — P —T =0, 1.e.
the condition (1.7) is already sufficient for (1.6).

The regularity assertions stated in the theorem are an immediate conse-
quence of Corollary 1.2. O

Remark. It should be emphasized that (1.6) actually defines an orthogonal
decomposition where orthogonality is meant to be taken with respect to the
inner product

(f,9) / f(z,y,2)g(z,y, ) dz dy,

for almost all z € (a,b). For, if a.(z) denote the Fourier coefficients of ¢
and b.(z) those of ¢, then the coefficient vectors of P and T' are

2 a(2)ik1 be(2z)iko
ex(2) = | Za(2)ike | and du(z) = | —bu(2)ir1 |,
—~a,(2)|s]’ 0
respectively. Thus,
[ {P@,y,2).T@w,2)) dedy = ¥ o(2)Td.(2) = 0.
K#£0

2. Applications to the Boussinesq-Equations.
Remarks on Energy Stability

In what follows we set a = —%, b= %, P = (—§,§)2 for some a > 0 (the
wave-number). This setting turns out to be useful in what follows. It’s clear
that the results of the first section apply to this situation. The Boussinesq-
equations (0.2) over the infinite layer R? x (—3,3) are usually connected
with two types of boundary-conditions, namely:




1%¢ Case: Rigid boundaries: u =0 at z = :i:%, d=0at z = :t%.

2" Case: Stress-free boundaries: O,u, = Guy=u,=0at z= :i:%, ¥ =0 at
z =41
2

Now let u € W*(( —3, 3 ), H3)® be solenoidal. We decompose it according
to Theorem 1.4 into P, T, F. If y satisfies one of the boundary-conditions
above we obtain

F3EO

(observe that [» Ayp(z,y,+3)dzdy = 0). Exploiting that u is solenoidal we
arrive in the first case at

DNyp=0 at z==1,
00 =0 at z=x41

This implies ¢ = 0,9 = 0 at z = 1. Thus 9,(9,9 + F}) = o = 0,
Or(~0ptp + F1) = =02 = 0 at z = +1 and consequently ¢ = 0, F = 0 at
B = :I:%. In an analogous fashion we obtain in the second case ¢ = §%¢ = 0,
0, =0,0,F=0at z = :l:%. Evidently our conditions on ¢, ¥, 9 and F
imply the corresponding ones on u, 9.

In the next step we express the Boussinesq-equations in terms of ¢, 1,
Y and F. To this end we are needing certain regularity assumptions on u,
Y (which implies some regularity for Vr or 7). It’s not necessary to state
these assumptions here. We will express them in terms of ¢, ¢, 9, F. In [6]
it’s shown, amongst other things, that the initial-boundary value problem in
@, ¥, ¥, F is well posed within appropriate spaces. We will indicate here,
however, how one obtains from the system for ¢, ¢, ¥ and F' the original
system (0/1/) To be sure of this step is of course an absolute necessity.

From (0.2) it follows that

curl (W' — Au+u-Vu — VRIE) = 0,
(2.1) divu = 0,
Prd’ — A¥ + Pru- V9 — VRu,

il
=

By Lemma 1.3 this is equivalent to

r <cur1(y'—Au+_u~Vu—\/§19E),k = 0,

<cur1 curl (v — Au+u-Vu — \/Eﬁk),kg = 0,

(2.2) ¢ /pcurl (v — Au+u-Vu~ \/]_%19&) dz dy 0,
divu = 0,

Prd’ — A9+ Pru- V9 — VRu, 0.

10
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Taking the decomposition
u = curlcurlpk + curlk + F = bp +ep + F
from Theorem 1.4 we infer from the first two equations in (2.2) that

(2.3) (=AY =A2)¢" + AY=Ay)p — VR(—Ay)9+
+é6-((dp+ep +F)-V(dp+eyp + F)) =0,

(2.4) (=A2)Y" + (=B)(—A)y—

- ((dp+ev+F) Vidp+eyp +F)) =0,
whereas the last one reads
(2.5) Pro’ — A9 + Pr(fp + e + F) - V9 — VR(=Az)p = 0.

The third equation in (2.2) reads

(2:6)  O.(F)) — 8F + (52082 [ (~2e0) (8,00 + ) de dy =0,

a
(27) OB~ 8Fa+(5-)'0? [ (~800)(8,0u — 0u) dady = 0.
Integrating the first and second row in (0.2) over P we obtain

1 _ 52 X2 . — (2
(28) F-0F+(;) /Pu Vu,dedy = ~(5-) /P@xwd:rdy,

/02 _2_ 2 ) — _ _a_ 2
(29) F-0F+(;) /Py_ Vu,dady = ~(5-) /Paywdwdy.
Since
/pg- Vu,dzdy = 0, /P(—Agcp)(azazgo + dyp) dz dy
/;Dg- Vu,dedy = 0, /p(—-Ach)(ayach — Oz¢)dz dy

the equations (2.6), (2.7) imply that [, 0,7 dz dy, fp 0,7 dz dy depend on t
only. Thus 7 = # + ¢(¢)T - (z) + d(t,z) where the two-vector ¢ is arbitrary
and depends on ¢ only. d is subject to the condition

(2.10) 8z(d+(%)2/puf da dy) = \/1_2(%)2/Pi9dxdy

which is implied by integration of the third row in (0.2) over P. 7 is periodic
in z,y with respect to P and fulfills [, 7 dz dy = 0.

11




The system we want to work with is now given by (2.3), (2.4), (2.5) and

) a2 a fp&- Vi, dedy _
(2.11) F 3ZF-I-(27T) (fp@-Vﬁyda:dy =10,

We have set ¢, = ¢; = 0, and & = §p + €9 in the decomposition v =
dp + €y + F. Observe that [pu-Vudrdy = [pi- Viidzdy and that @ is
simply that part of » which has mean value 0 over P. The system in question
is written now in matrix-form. Set

[(~A)-Ay) 0 0 0 0
0 (=A;) 0 0 0
B = 0 0 PrI 0 0],
0 0 0’ I 0
0 0 0 0 I
[ A¥(=Ay) 0 0 0 0
0 (=A)(=A;) 0 0 0
A = 0 0 (=A) 0 0o |,
0 0 0 (=8) o0
0 0 0 0 (=87
[0 0 (-Ay) 00
0 0 0 00
C = |(-A) 0 o0 o0 0],
0 0 0 00
0 0 0 00
¢
Y
& = |9
F
F,

The nonlinear part is denoted by M(®). Then the system we are going to
consider is simply

BY + A® — VRC® + M(®) = 0
(2.12) { 3(0) 3,

under boundary conditions as indicated in the beginning of this section. To
obtain (0.1) from this system we set u = 8¢ + ¢ + F. From the solution
which is constructed in [6] it’s easily seen that F', 9?F possess a further
z-derivative for ¢ > 0. Then (2.3), (2.4), (2.5), (2.6), (2.7) are at our disposal

12




which are a reformulation of (2.2). (2.2) however yields (2.1), i.e. we obtain
u — Au +u-Vu — \/Eﬂk = —Vr with a periodic pressure gradient. = is
decomposed as before into 7 = 7 + d, where d is subject to (2.10).

The system (2.12) is most easily treated within an appropriate Hilbert
space H, where A, B become strictly positive definite selfadjoint operators
and C is hermitian. As Hilbert space H we take

H =MHp X Hayr X H x H' x H?

with ¢ € Hp, ¥ € Ha, 9 € H, Fy € H', F, € H! in the case of rigid
boundaries. Here
Hu = {¢]@eW(~31)L3), [ @dedy=0},
"= WL IR
H = {f|fel (-4}

‘Har, H are made Hilbert spaces in the usual way. For H! we choose the inner
product

(F,9)= () /__f gds.

In the case of stress-free boundaries we take
H = Hp X Hpg X H x Hyp X Hiy

with H}, being the closed subspace of H! which consists of the f having
vanishing mean value over ( —3,; ). Now we can define A, B, C by defining
A = A¥=A,), B = (~A)(=A,) for ¢, B = (=A)(—A,) for ¢ and —A for
9, =82 for Fy, Fy, —A, for ¢, 1 and 9 as well. Observe that we have two

different kinds of operators (—A)(—A;) in the case of stress-free boundaries.

Definition 2.1: We ezpand ¢, 1, 9 in series

(213) so(x’y,z) = 2_ Z aﬂ(z)eian-(z‘,y),
T re?\(0}

(214) 1/)(;1;,y’z) = E_ E bﬂ(z)61,'(,m~(1;,y)7
27 wet\(o0)

(215) ﬁ(m,y’z) - i Z cﬂ(z)emn ,y),
27 nc2?

the series being convergent in WO((—3,3),L%). Set
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A = (alf =&y
= o*ls|' ~20°|s[*0} + 82, w77\ {0},
D(4:) = {f|feH((-41)) with cither f =0.f =0

atz=45 or f=0}f =0 atz::l:%}.

Then Ax 18 a strictly positive definite selfadjoint operator in L*(( — 33))

We define A = A?(—A;) on

DA) = {ga | v € Hy, ¢ is ezpanded as in (2.13),

a, eD(A ), &€1Z*\{0},

> / 4)[& 1" Axan|? dz < +oo}

re2?\{0}
by
Adp = 2 3 ?lk|*Aeaei”
27 eriv(0)
Set

~

B, = o’lk[*- 3, kel®\{0},
D(B.) = {f|feH"(-4})) with f=0atz==+L}.

Then B, is a strictly positive definite selfadjoint operator in L*((—3,1)).
We define B = (—A)(—A,) on

D(B) = {go Igo € Hy, ¢ is expanded as in (2.13),
ax € D(B,), REP\{O}

> /1 ' dz < +oo}
kez2\{0} ' "2
by
By = 2 Z o?|k|* Ba e
T cez2\{0}
Let
B. = &lk['-82, xel*\{0},
D(B.) = {f I feHY(-1,1)) with either f =0

at z = + 50r82f=0atz=:t§}.
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Then B, is a strictly positive definite selfadjoint operator in L2(( —%,%))
(|&| =2 1!). We define B = (=A)—A,) on
D(B) = {1/) l W € Huy, 1 is expanded as in (2.14),
b € D(B,), «€1*\{0},

1
> /21 ot |k|*|Bebu|* dz < —I—oo}
2

x€Z2\{0}
b
¥ a 2 2 k.
By = o > af|k|"Bibee .
T kex?\{0}

It is now obvious how —A is defined for 9, i.e. in H, —Aq in Hyr o H, —9?
in HY or Hjy. :

Next we prove

Theorem 2.2: A, B are strictly positive definite selfadjoint operators in H.

PROOF: The assertion is proved by showing that A, B, B, —A, —0? are
strictly positive definite selfadjoint operators in the corresponding Hilbert
spaces. It’s sufficient to do this for A: Either the proofs are very similar to
each other or the assertion is well known as in the case of —02. As for A it’s
clear that A is densely defined and hermitian. Now we have to show that

(ALi)p=f

is uniquely solvable in D(A) for any given f € Hps. To this end we take the
expansion
a e
f — 2_7r Z fn glok.
w€Z2\{0}

and set
1

a, = —
" o2k

t -1
At —— .
( a2|n|2) f
It’s clear that ¢ with expansion coefficients a, is the required solution. The
strict positivity follows from Parseval’s equation. O

The choice of the various Hilbert spaces of functions with vanishing mean
values corresponds to the invariance properties of the nonlinear terms. For
these and other invariance properties see [6, sect. IV]. The norm |4 .|| is

11

equivalent with the norm of W*(( -3, 1), Hp). Corresponding equivalences
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hold for the other operators. See [6, sect. III]. The spaces within which we
solve (2.12) are now at hand. We are looking for solutions ® with

(2.16) ® € L*(0,T),D(A)),
(2.17) ' e L¥(0,T),D(B)),
and, as a result of interpolation,

(2.18) VB® € C°0,T], H)

where V refers to each component of B®. In particular ®; is required to
fulfill [VB®o|| < +oc. This construction is carried through in [6, sect. IV]. In
general T is not allowed to exceed a maximal finite value, unless Pr = 400 or
the solution represents a convection roll. Imposing compatibility conditions
the regularity behaviour near t = 0 can be studied.

When constructing the solution with properties (2.16), (2.17), (2.18) one
is faced with a characteristic difficulty in the case of rigid boundaries. A? in
the first row of (2.12) is no longer the square in the operator-theoretical sense
of (—A) in front of (—A;)¢’ as it is for stress-free boundaries. Therefore the
range Pr € [1,2] has to be excluded. This difficulty can be removed if one
considers a somewhat weaker form of solutions as is done in [6, sect. V].

Now we want to consider the energy-equality for solutions with properties

(2.16), (2.17), (2.18). It reads
d 2 2
E”B%@(t)u +2|A78(t)| - 2VR(CO(t), @(t)) =
with ”B%CI)(t)“ as (kinetic) energy at time ¢. It’s therefore interesting to ask
Voo BN X )
Pmin sen( A)\{O} |(C®, D)
in dependence on a®. If 0 < R < Ruin(a?) then the energy can be esti-
mated a-priori independently of R and is monotonically non increasing or

even decays exponentially (if R < Rpin(@?)). This variational problem can
be attacked in the way that one wants to find

or

I Vul® + | V9)*
2|(uz’19)|

where the infimum has to be taken over (u, d)withu #0,9#0,V-u=0,u,
Y periodic with respect to any rectangle. The condition V - u = 0 is covered
by introducing a Lagrange-multiplier. Then the Euler-Lagrange equations
are considered. After solving them one is confronted with the problem to
show that the solution is a minimizer of the functional under consideration

inf
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on suitable subclasses of the admissible u, ¥. Thus it seems to be easier to
start with Courant’s classical method of finding the eigenvalues of a compact
selfadjoint operator. Here we only prove an estimate from below for (A®, ®)
which turns out to be sharp in the case of stress-free boundaries. We have

Proposition 2.3: For & € D(A) the following estimate holds:

; (212 . -

(2.19) (A, ®) > (in. R;(a?|s|") - |(CD,®)], ¢=0,1,

with (o + 72
o+

Ro(a?) = T

in the case of stress-free boundaries, and

(a?+7)
a2

, a>0,

Ri(a®) = (a® + X(a®))
in the case of rigid boundaries. Here M a?) is the smallest eigenvalue of

9:—2a20?% in L*(( —1,1)) under boundary conditions f = 3,f =0 at z = +3.

In the case of stress-free boundaries we have
Ruin(¢®) = min Ro(a?|s|*),
(a®) = _smin Rof?lil’)

PROOF: If we take Parseval’s equation for (A®,®) and (C®, ®) together
with the expansions (2.13), (2.15) the estimate (2.19) is easily shown. One

only has to use the extremal property of the smallest eigenvalue of —0?,
(—8?)? under Dirichlet-0-conditions (which are n2, 7*) and of 9} — 2a°?

under boundary conditions f = 8,f = 0 at z = +1. It’s easily seen
that mingez\ (o} Ri(a2|n|2) is assumed for some k;, ¢ = 0,1. In the case
of stress-free boundaries Ry assumes its minimal value R. = 277*/4 in

o, = 7r/\/2_ Thus minez2\ {0} RO(O(2]FJ|2) = Ro(a?) for @ > a,. The func-
tional (A®, ®)/(C®, ®) assumes the value /Ro(a?) in @ = (¢,0,9,0,0)T with
@(z,y,2) = cosaz cosmz, ¥ = (a® + 72)2ap. The situation is different for
« € (0, a, ), since Ry is monotonically decreasing on (0, a.]. If kg = (K01, Ko2)
and if Ro(a?|ko|?) is minimal, then (A®, ®)/(C®,®) assumes \/Ro(a?|ro|*)
in ® = (¢,0,9,0,0)T with p(z,y,2) = cosakgz cosarey cosnz and ¥ =

(a?|ko|* 4+ 72)2a|kol. The assertion is proved. ]
Anything what was said before remains true if the periodicity cell (—Z, X 2
is replaced by a rectangle (—%,%) %X (-3, % ), with the single modification .

that a?|x|® has to be replaced by a?«? + fdx2. Thus, if one wants that the H 2
energy is monotonically non increasing for any ® being periodic in z,y with
respect to a rectangle, one needs R < R, in the case of stress-free boundaries.
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