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Abstract. In this paper a general initial-boundary value problem for a higher
order linear parabolic equation with time dependent coefficients and non homoge-
neous data is studied by the abstract results obtained from a generalization of the
classical theory of analytic semigroups of linear operators.

1 Introduction and notations

This paper gives a proof of existence, uniqueness, and optimal Holder regu-
larity of the solutions of the linear parabolic initial-boundary value problem
of higher order:

Du(t,z) = ¥ a,(t,z)DJu(t, ) + f(t,2),

lvI<2m
(t,z) € Q =1[0,T] x N
(1.1) u(0,z) = uo(z), z € N

|ﬁ|§ 'bjﬁ(t7 x)Dfu(t,:c) = gj(tax);

| (t,z) e S=[0,T]xT, j=1,..,m.

Here ) is a bounded open set in IR" with smooth boundary I'. For every
multi-index 8 = (B1,-+,8,) € N" we set |8] = B + -+ + B, and DPu =
DB ... DPru. We assume that, for every t € [0,7], the operator

(12) AW)= Y at,.)DL

[v|<2m

is elliptic and the boundary operators

(13) Bj(t)z Z bjﬁ(t")Df’jz L---,m

IBI<m;

of order m; < 2m satisfy the usual requirements which guarantee the ex-
istence of the resolvent in a sufficiently large set of the complex plane (see
section 2 for precise conditions). In [S] V. A. Solonnikov considered a larger



class of parabolic problems using the methods of potential theory. He showed
in particular, the unique solvability of (1.1) in the Holder classes C'3m'*(Q)
for any nonintegral o > 0 if the A(t) are uniformly strongly elliptic and if
the B; fulfill conditions being very similar to ours.

If the leading coefficients of A(t) are real valued the conditions in [S]
coincide with ours in the case of a single equation, which is considered here.
The space C3m%(Q) is the set of the a-Holder continuous functions with
respect to the parabolic distance d((¢,z),(s,y)) = |t — s|ﬁ +lz—yl, t,s €
[0,T);z,y € Q. In section 1 we will show that a function u: [0,7] x Q@ — €
belongs to C'zm'*(Q) if and only if ¢ — wu(t,-) belongs to C3 ([0, T]; C°(Q))
and t — Djfu(t,-) is bounded with values in C*~*"*(Q) for k = 0,-- -, [3%]
([r] denotes the integral part of the real number r). This result is important
for the abstract approach to problem (1.1) that we will develop. In fact we
reduce (1.1) to a problem for an ordinary differential equation in the Banach
space X of continuous functions on ), namely

u'(t) = A(t)u(t) + f(t), t€[0,T]
BJ(t)u(t) = gj(t)’ te [O’T]a .7 = 17' ct,Mm

in the unknown u : [0,7] — X, where we have set u(t) = u(t,-), f(t) = f(t,-)
and g;(t) = g(t,-). For each to € [0,T] the linear operator

(A:D(A)CX - X

(1.5) < p>1
j =1, am}

| Ay = A(to)p, v € D(A)

generates an analytic semigroup in X (not necessary strongly continuous at
t = 0) but the classical theory of semigroups cannot be directly used to solve
(1.4) when g; # 0 for some j = 1,---,m or when B; has order m; = 0 for

some j = 1,---,m: in this latter case D(A) # X, so that we must employ
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the results of the theory of analytic semigroups with non densely defined
generators (see [Si]). We study problem (1.4) in two steps: first we consider
the autonomous case in an arbitrary interval [¢o,?;] contained in [0, T:

v'(t) = A(to)'l)(t) + f(t), t e [tO,tI]

BJ(tO)v(t) = g](t)? te [thtl]’ .7 = 1’ IRERLLE
Then we use a perturbation method to solve (1.4) in a suitable interval [0, 7]
and by means of a sharp estimate of the solution we repeat the same pro-
cedure in [7,27] so that we can extend our solution on the whole of [0, 7.
To overcome the above mentioned problem caused by the non homogeneous

boundary data g; we adapt to our situation a device introduced by A. Bal-
akrishnan ([B]): we construct a function n : [0,7] — X such that

(1.7)  Bj(to)(n(t)) = ¢;(t), t€tota], j=1,---,m.

If v is a solution of 1.6 and n is sufficiently regular then, w(t) = v(t) — n(t)
satisfies

w(t) = A(to)w(t) + Alto)n(t) — n'(t) + (), t€ [to,t]
(1.8) w(to) = vo — n(to)
Bj(to)w(t) =0, t € [to,t]

so that w is given by the variation of constants formula
¢
(1.9) w(t) = =@ oo —n(to)] + [ €= [Alto)n(s) = n'(s) + F(s)] ds,
to

t € [to, t1]
where e*? is the semigroup generated by A in X. Integrating by parts we get
a representation formula for the solution of (1.6):
t
(1.10) o(t) = et-©Ayy 4 / eI [A(to)n(s) + F(s)]ds —

to



¢
—A/e(t_s)An(s)ds, t € [to, 1]
to

which makes sense even if n is merely Holder continuous. In fact we will
choose n in such a way that v defined by (1.10) is the unique solution of (1.6)
in the mentioned Holder classes. In [L] for each t € [to, ], n(t) = n(t,-) is
defined as the solution of the elliptic problem

(1.11) { A(to)n(t,-) = wn(t,")

Bj(tO)n(ta') = gj(t)a J=1-m

where w € p(A), the resolvent set of A. But this choice is not useful in our
case and thus we are led to construct explicitly a linear operator N such that

@j € C?™ ™ (T), j=1,---,m = N(p1, -, pm) € C*™(Q)
(112) P € 02m+a—mj(11)’ .7 = 1" ce,m = N(‘Ph" : ,Som) € 02m+a(0)

Bj(tO)N(¢1,"',SOm)=9oj, .7= 1?"'am

and then set n(t) = N(p1(t), -+, m(t)), t € [to,t:1].

In this paper we use the following notations: If X is a Banach space,
k € IN,o €]0,1[ then C¥([to,t]; X) is the space of the k times continuously
differentiable functions from [to,%;] to X and C**7([to,#,]; X) is the space
of functions whose k-th derivative is o—Holder continuous. These spaces
are endowed with their usual norms. B([to,?;]; X') denotes the space of all
bounded functions from [to,?;] to X with the sup-norm. If 2 is a bounded
open set of R® and @ > 0, o ¢ IN then C%(Q) is the space of the a-
Hélder continuous functions from Q to € with the usual norm. If T' is the
boundary of €2 we say that I' is of class « if there exist a finite number of

N o
closed balls By,---, By such that I' € U B; and a C?-diffeomorphism ¢;

=1
from B; into the closed unit ball B of R™ such that ¢;(B; N Q) = By =

{(yl,-.-,yn) € B;y, >0} and p;(B;NI) =3 = {(y1,*+,Yn) € B; yn = 0}.
The space CP(T') with B € [0,a] is the set of all ¢ : I' — € such that



gop;t € CP(X) fori = 1,---,N. If « €)0,1[ and u : & — € we set
e = sup{lu(e) — u(@)l/lz — 9| 2,9 € 8, = # y}; an analogous
definition is given for [u]ca(f,4])-

The structure of the paper is the following: in section 2 we study the
spaces C'7m%([0,T] x Q) and in section 3 we prove some new maximal reg-
ularity results for abstract parabolic equations: they are the basic tools of
our proofs. Sections 4, 5, 7, 8, concern the autonomous problem (1.8): they
can be considered as the Holder counterpart of [L] where several L? and H*
regularity results are given for the function v defined by (1.10). In section 6
we construct the extension operator N from I' to () satisfying (1.12). Finally
in section 9 we treat the non autonomous problem: in this case the regularity
theorem is obtained from the autonomous case by perturbation techniques

and by sharp estimates. The homogeneous Dirichlet problem was treated by
Sinestrari and von Wahl (see [W1]).

2 Holder spaces in cylindrical domains

Let ©2 be a bounded set of R™ with boundary I of class 2m+«, where m € IN
and a > 0 is not integer. Setting Q = [to,#1] x 2, we recall the following (see

[SD-

Definition 2.1 C#%(Q) is the Banach space of the functions u : Q — €
such that:

(2.1) There ezxist continuous DF DPu in Q if 2mk + |B| < [a].

(22) 5L = > sup  [Dy Dou(t,)]ca-tei(a)
2mk+[Bl=[a] t€Elto,t1]
=]
= 2 > sup  [DfDSu(t, )]gatalqy < o0

k=0 |B|=[a]-2mk tE[tost1]

B kDB
(23) L = Z i 4 [Dthu(’x)]ca—_L%I;?—m([to,tl])

a—2m<2mk+|Bl<a  TEQ

o<ioicl] €0 = o225 (0,10))



with the norm
(2.4) ||u||C-2-gn-,a(Q) = b+ hL+1,

where

(2.5) Ly = > sup | DFDPu(t,z)|
2mk+|8|<[a] (t,x)€eQ
(3]
= > > sup  |D;DJu(tz)

k=0 |8|<[a]-2mk (t,2)€EQ

We prove now a result which gives a characterization of the space C'zm*(Q).

Theorem 2.2 u € Cz*(Q) if and only if, setting u(t,-) = u(t) fort €
[to,t1], we have

(2.6) e Cm([to, 1]; CO(Q))

2.7)  u® € B([to, ta]; C*™(Q)), k=0, ,[—]
2m

Moreover defining

28)  Nulllpggog = %+

with

(29) L= ”u”ci‘fn‘([tmtl];C(Q))

5]

(2.10)  Jo = 3 lu® 5o tafsoa-2mr (@)
k=0

there exists ¢; = ¢;(a,m, Q) such that

(211) clllu”c#ﬁva(Q) S |||u”|ci?n‘a(Q) S 2“u|lcﬁn'v°‘(Q)‘
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Finally if u € Com*(Q) then
(2.12) u€ CF ([to,t:];CH()), h=0,---,[a]
and there exists c; = c(a, m, Q) such that

[a]
(213) ,;”uno%_?h([toytlhch(ﬁ)) < c2|||u”|07{rxn"“(Q)'

Proof. Conditions (2.1) and (2.2) are equivalent to

(2.14) w € C*([to, t1); C1-™(Q)), k=0, [—]

2m
(2.15)  u® € B([to, t1];C**™*(Q)), k=0,---, [%].

Moreover there exists ¢;1 = ¢11(a,m) such that

(2.16) Jp < Ih+ 1, < ennds.

In addition conditions (2.1) and (2.3) imply that

(2.17) u € Cm([to, t1]; C°(Q))

and we have

(2.18) Jy < Ip+ 1,

In conclusion, if u € Czm*(Q) then (2.6) and (2.7) are true and
219) Mlllgteg < 2ellofo

Before proving the converse let us show that (2.6) and (2.7) imply (2.12): we
can suppose [a] > 0. From (2.7) we first deduce for h =1, -, [a]
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(2.20) u™ € B([to, t1];C"(Q)), r=0,---,]

then setting

a—h a—h a—h

(221) k=[5l 0=

we have
(2.22) u® € C’([to, t1]; CH(Q)).

Actually, by using interpolatory estimates (see e.g. [ADN], p. 657, [W2], p.
255) we obtain when k = [3-]

B (") = u® (@) |ona)
y R SO
(2.23) < epal[u® () - u(k)(t')||C;2_';',';k (Q)||u(k)(t") —u® (@] ooy
< 2e10(Jy + K — |5k 1 € [t t]

and when k < [5%]

[ lu®(t") = u®@)lona
< el [u®() — u<'°>(t'>||ca-;tf;;)
B — u® ()| E sy )
< eyt — H|FE 7 € [to, ]

(2.24) <

\

where ¢;2 and ¢;3 depend on a,m and Q. Now (2.20) -(2.24) prove (2.12)
and (2.13). But (2.12) implies (2.14) and (2.7) is (2.15): hence from what we
have seen at the beginning of the proof we can say that (2.6) and (2.7) imply
(2.1) and (2.2); but also (2.3) is verified because from (2.23) and (2.24) we

deduce (setting v = 2=%)

h=0 t',t”e[to 7t1]

< 2zt es)(di+ ) + o

[o] b () = ub) ()| g
(2.25) {IZ = s el |t”—t'|v—hlc£ﬂl
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which (together with (2.16)) gives also the first of (2.11). m]

Remark: From definition 1.1 it follows that if v € C2m*(Q) and v € N
with 1 < |y| < [a] then DYu € C#m®'(Q) with o/ = a — |y| and if h € N
with 1 < h < [5%] then Dfu € C3°"(Q) with o = a — 2mbh.

In addition, from theorem 1.2 it follows that C’%’“"(Q) — C%:»"""(Q) for
o <o

3 A maximal regularity result for abstract
parabolic equations

Let X be a Banach space with norm || - || and let A : D(A) C X — X be a

linear operator satisfying the following condition:

A # w and |arg(A — w)| < n then A is in the resolvent

There exist w € R, n €]5,7[ and M > 0 such that if A € C,
(3.1)
set of A and ||[(A —w)(A = A)7Y|px) < M.

In this case A generates an analytic semigroup e'* which is not strongly

continuous at ¢t = 0 if D(A) # X (for analytic semigroups with non dense
domain we refer to ([Si]).

A family of intermediate spaces between D(A) and X can be defined by
(3.2)  Dy(B,00) = {w € X;[z]p = sup [[t*PAez| < oo}, 0<pB<1.
0<i<1

They are Banach spaces under the norm

(3:3)  llzllpa(s.eo) = ll2ll + [2]s

and given k£ € IN and  €]0,1[ there exists a continuous and increasing
function My : Ry — IRy such that
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(34) ”tk_ﬁAketA“L(DA(ﬁ,oo),X) < Mk,ﬁ(T), 0<t<LT.

The spaces Dj(f3,00) are necessary to study the maximal Holder regularity
in time up to ¢t = ¢y of the initial value problem

(3.5) {v’<t>=Av<t)+so(t), € [to,t1]

v( 0) = ?p.

Here we recall first a sharp regularity result proved in [Si], Theorem 4.5 in
the case w = 0: the case w # 0 is obtained by changing the unknown v(¢)
with e“*v(t).

Theorem 3.1 Let (3.1) hold and let ¢ € CO([to,t1]; X), vo € D(A), Avo +
©(to) € Dp(0,00),0 < 0 < 1. Then the unique solution of problem (3.5) is
given by

t
(3.6) o) = el=®Ay, 4+ / =M o(e)ds, € [to, ).
to

Moreover v', Av € C%([to,t1]; X),v" € B([to,t1]; Da(0,0)) and there exists a
continuous and increasing function c3 : Ry — Ry such that

(3.7) [ollca+oqito,tstix)y + NIV |B(tto 11D (61,00))
< es(ts — o) {[SO]C"([to,h];X) + [[voll + [[Avo + So(to)”DA(e,oo)}-
The function c3 depends also on M,w,n and 0 (see (3.1)).
By using this theorem we can prove a further result of maximal regularity
under the assumption that ¢ has values in some intermediate space: this will

be used in the application to the parabolic problem (1.1).

Theorem 3.2 Let (3.1) hold and let ¢ € CO([to,t1], Da(B,0)) with 0, €
10,1[. If ¢(to) = vo = 0 then the solution v of (3.5) is such that

(3.8) ', Av € C%[to, t1]; Da(B,0)).
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If in addition 6 + B # 1 then we have also
(3.9)  Av € C*F([to, t1]; X).

Moreover when 0 < 0 + 3 <1 we have
(3.10) o' € B([to, t1]; Da(8 + B,0))

and there exists a continuous and increasing function ¢4 : Ry — Ry (de-
pending also on M,n,w,0 and () such that

(3.11) { [v]lcr+6(fto,t:1:Da (Br00)) T 1AV cO+8(1to,21:x) T 1Vl B({to,t11:D4 (048,00))

< ety — to)[Pleo(ito a)iDa (8,00)) -
In the case 1 < 0 + B < 2 there exists (Av)'(t) = AV/'(t) for t € [to,t1] and
(3.12) (Av)' € B([to,t1]; Da(0 + B — 1,00))

and there exists a continuous and increasing function ¢s : Ry — Ry (de-
pending also on M,n,w,0 and ) such that:

lvllcr+e((to,t21:0a (Br00)) T 1AV ]I o+ (1t0,817:)
(3.13) +{|(Av)'|| B(to,111;Da (64+8-1,00))

< C5(t1 - to)[‘P]Ce([to,tll;DA(/@yOO))'

Finally if 0 + 8 # 1 we have v € CO*P([to, t1]; D(A)) (with D(A) endowed
with the graph norm).

Proof.  For brevity we will write C? instead of C’([to,t1]; Da(8,00)) and
we will denote by ¢ a generic function with the same properties as c4 and c;
in the statement above. Setting D(A) = {z € D(A); Az € Dy(B,00)} and
Az = Az for € D(A), the operator A : D(A) C Dy(f,00) = Dp(B,0)
satisfies (3.1) (see proposition 1.10 of [Si]). Applying the previous theorem
we find that (3.5) with vy = 0 has a unique solution v given by (3.6) (with
vo = 0) and (3.8) holds. Moreover from (3.7) we obtain

12



(3.14)  ||vllca+e(ito,tliDa(8,00)) < clplce-

Suppose now 0 < § + 3 < 1. From (4.1) of [Si] we get
t
(3.15) Av(t) = A [ e9p(s) - p(D)]ds + [~ ~ Do), ¢ € [to, 1]
to

and so when to <r <t<t

' Av(t) — Av(r)

= A f[e0 — elr=M][p(s) — p(r))ds+
(3.16) < b
A J el=Iip(s) = p(t)}ds + [et)% — el ip(r) +
(1 — e="Mp(r) — (1))

By using (3.4) we have for tp <s <r <t <t

4

[ A[l=* — 0= [p(s) — ()]
317) § =IlA [ Aetrp(s) — o(r)]dé||

< cliglos T (r — )°€5de.

Moreover, as ¢(ty) = 0:

[[et-8 — er=oWo(m)| = || T AN ip(r) — plto)lde]
(3.18) —t r=to
< c[p]ee r_ft (r — to)?€P1dE

and

{ T = e=Mlo(r) — (@]l = I|'T AcAp(r) — (8))de|
(3.19) 0

< cliglos f (8 = r)€5de.
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Now we can deduce from (3.16) for to < r <t < t;:

[ 1Av(t) = Av(r)]|
(320) | < clelos{[(r—9)'ds [¢"Re + [(2 - 5)* st
(r—t0)’ T €0 NdE + (=) [ ¢

As B+ 0 <1 we get

[ J(r—syds | €o-2de

to

< Jds J e
(3.21) ¢ _ (1= B —0)~1(B+0)~1[(t — r)P+0 — (t — to)7+0

T (r — 1))
< (1=B—0)(B+0)7(t— )P+

and also
[ (r—to)? T €51
(322) § < Tl = (04 B~ 1) — ( — 1)
< (0+8)7 Mt —r)PH?

\

and so from (3.20) we get

[Av(t) = Av(r)l| < clploe(t —=r)™*7, to<r<t<t

hence Av € C*+P([to, t1]; X), i.e. (3.9) holds. Moreover

(3.23)  [Av]ce+s(jto,tix) < c[e]ce-
From the previous theorem we deduce
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(3.24) |1V'|B(to,t11sDa(b:00)) < €lip)ce

and by using (3.2) and (3.4) we get for t € [to, 1]

[V (O)llpa+se0) = V(BN + sup [[s'=*=PAetv'(2)]
0<s<1
(3.25) < @I + ¢ sup ||s'=?Ae v (£)l|pa(s.00)
0<s<1
\ < ello/(1)l|pacorce-

Hence from (3.23) we obtain (3.10) and

(3.26) ||Vl B(ito,t11iDa(6+8.:00)) < cl@]ce.

To prove (3.11) we will use (3.15) and (3.4) to get a first estimate which
holds also when 8 + 3 > 1:

( t
[Av(t)]] < tf | A=A 1D (8,00),3)[19(8) — ()] Da (8,00) A5+
0

1] Aettlio(t) — ot

(3.27) ) e
S df(t- o)™ s + [ (t—10)'¢" dE][ples
{ < (04 8)7 4 B (1 — o)) ce.

Hence by using also (3.23) we obtain

(328) ”Av”C“ﬁ([to,il];X) < c[‘P]Co‘

Now (3.11) is a consequence of (3.14), (3.26), and (3.28).

Let us examine the case 1 < 6 + 3 < 2, setting v = 6 + 3. From (4.2) of
[Si] we have

(3.29) o'(t) = / Ael=M[o(s) — p(t)]ds + e"~Ap(t), t € [to, 1]

15



hence by using (3.4) we obtain for ¢ € [to, t1]:

(3.30)

J

AV = A% p(s) - p(t))ds
AN (1) = p(to)]|

t
< tf”Aze(t—s)A”L(DA(ﬁ,OO),X)”99(3) — ()|l Dy (B00) 43
0

+[|Aet= M | (D, (8,00),3) (1) — P(t0) | Dy (8,00)

< dlelonlf(t— sy s + (1= )] < el

\

whereas for to < s <t < t; we have

(3.31)

4

A1) = Av(s) =[O — el fp(0) — o(s)]do

i
+ [ A2t p(0) — p(t)]do
+A[e(t_t0)A S e(s—tO)A](P(S)

+Ae=Mp(t) — ¢(s)].

\

Now from (3.4) we get

(3.32)

4

(

| [ A2 — =M [(0) — (s)]dor|

to

= I f a1 T e lplo) - (s)larlo]

s t—o
< Jdo [ IA2€™ | LD (8100), ) 19(0) — £(8) | Dy (8,00) AT
0 §—0
s t—o
< c¢lee f(s —o)ido [ TP3dr
to s§—0
<

clplce t{s da:_f:ﬂ'sd'r
clplos(2 =)y —1)7
[(t =)t = (t—to)" + (s —t0)"']

| S delee =)y =D)7THE -8
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and also

[ 1] 2P (o) — p(t)ldoll < clglos f(t - o)do

= (2~ 7) eloe(t —s)~*

(3.33)

[ A[et=0A — ele—0A]o(s))|
t—1to
= 1| I A% p(s) — plto)]dor]

t—to
clples [ oP¥(s —to)ldo

s—1p

(3.34) o

IN

IA

t—to
clplee [ oo

—to

clelee(y = 1)t — 57!

IA

(3 35) { ”Ae(t—S)A[SO(t) - SD(S)]” S ”Ae(t—S)A||L(DA(,3,OO);X)[(P]CQ (t —_ 3)9

< cpleo(t — )7
From (3.31), by virtue of (3.32) - (3.35), we obtain
(3.36) Av' € C"Y([to, ta]; X).

But for ¢,¢ + h € [to,t1], h # 0 we have:

Av(t + h) — Av(t)
L — AV'(t

;~|'—'

"
(3:37) | Iz [ [Av'(s) = Av'(D)lds]

and so the continuity of Av’(-) implies that there exists
(3.38) (Av)'(t) = AV'(2), t € [to, t1].

Then from (3.36) we deduce that Av € C7([to,t1]; X), i.e. (3.9) holds; by
using (3.27), (3.30), (3.31) and (3.32)- (3.35) we obtain also
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(3.39)  |[Avllgota(tot)ix)y < clp)ce-

Let us prove (3.12). For t € [to, t1] and ¢ €]0,1[ we get from (3.29) and (3.4)

[ [leAet A (1)
= ¥ ] A%+ p(s) — p(t)}ds

FETARC 0 ON (1) — (b))
< clplonl€? (£ = 5)7( = o+ €'~

T+t — to + )72t — 1))

clplonlE J(t s+ €7=2ds + €t —to + 7
cliploed(2 = 1)L — (55 )*] + (=bge)™™)
| < deledl =)+ 1.

(3.40) <

I IA

N

This proves that Av’ € B([to,t1]; Da(y — 1,00)), i.e. (3.12) holds. Moreover
from (3.30) and (3.40) we obtain

| Av"|| B({to,11:Da (v=1,00))

(3.41) = sup [[|[AV(t)]| + sup [|E>7"AeAAV ()]
0<¢<1

t€(to,t1]
< cpleo
and also estimate (3.13) as a consequence of (3.14), (3.39), and (3.41). The

last assertion of the theorem follows from the fact that (3.8) implies v €
C*B([to,11]; X) and Av € C¥*P([to, t1]; X) (see (3.9)) when § + B #1. O

4 The case of time independent coefficients

Let © be a bounded open set in R* with C?*™** boundary I' where m,a >
0 with m € N and @ ¢ IN. For each z € I', we denote by v(z) =
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(v1(z), -+, va(x)) the unit exterior normal vector to I' at the point z. Given
[to,t1] € R we set again @ = [to, ;] X @ and S = [to,t;] x .

We consider the linear parabolic initial-boundary value problem (1.1)
when the coefficients are independent on time, i.e.:

[ Daut,e)= ¥ a(e)Dlult,z)+ f(t,2), (t,z)€Q

[vI<2m
(4.1) < u(to, ) = up(x), z € Q0

| lz bJ,@(x)Dgu(tax) =gj(t,:l,'), .7 = 1,---,m, (t,:t) € S.
\ ﬁSm]

The coeflicients a., and b;z are subject to the following assumptions:

4

(a) (regularity) a, € C*(Q) for each v € IN" such that |y| < 2m.

(b) (ellipticity) There exist u > 0,79 €]3, 7 such that for each
z € Q,n € [—no,n0), € € R, r € R with |£|> + r? # 0 we have
I B e e e YT
(c) (roots condition) For each = € I',n € [—no,n0],€ € R",r € R
with [£]? +r? # 0 and (¢,v(z)) = 0, the polynomial
p(z) = T ay()[€+zv(@)] — (—1)"rime

[v|=2m
has exactly m roots z;'(x, &r,m),7 =1,---,m with positive
imaginary part.
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(a) (regularity) b;s € C*"*+*~™(T') for each j = 1,---,m
and for each 8 € IN" such that |3| < m;

(b) (normality) 0 < my < my < --- < m,, < 2m — 1 and for each
j=1,---.m, ¥ bis(z)(v(z))? #0 forz €.

(c) (complementing condition) For each z € I',{ € R",r € R
with |£|> + 72 # 0 and (£, v(z)) = 0, the polynomials
pj(z2) = ¥ bip(z)(€ +2v(x))P, j =1, -+, m are linearly

|Bl=m;
independent modulo the polynomial

q(z) = i'n[ (z — zf (2,€,7m,m)) where z] are defined in 4.2(c).
7=1

\

Let us observe that the last condition of (b) is a consequence of (c).

Concerning the data f,uo and g; (j = 1,---,m) we assume that

a = 2m+a—-mi .
(4.4) {f € C750(Q), uo € C™+(Q), g; € O b ambammy(g),

j=1,---,m.

We want to prove the existence of a solution u of (4.1) such that

2m+ta

(4.5)  ue€ Com 2mH(Q).

Then it is known (see [S]) that the following compatibility conditions must
hold
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2 b]ﬁ(w)Dguk(x) = Dtkgj(torz)’ zel, j=1,---,m;
IBISm;

k:O,...,[_LZ'n’;fn-’n']

where we have set for each z € Q :
u®(z) = uo(z)

uP(z) = 5 ay(x)D3uV(z) + D™ f(to, z),

[v|<2m

(4.6) ¢

k:1,...,[2_72')rl-_a

\ m 1)

and we have also

2m+a]
2m

(4.7)  u®(z) = DFu(to,z), 2 €, k=1,---,]

We will prove in sections 6 and 7 that the conditions (4.6) are also sufficient
to obtain a solution of (4.1) verifying (4.5). More precisely the following
result holds true:

Theorem 4.1 Let assumptions (4.2)-(4.8) hold. Given f,uo and g;(j =
1,--+,m) satisfying (4.4) and the compatibility conditions (4.6), there exists a
unique solution u € Cz_%ﬂ’zm"'“(Q) of problem (4.1). Moreover there exists a
continuous and increasing function ¢ : Ry — R4 (depending also on bounds
of the norms of a.,, bjz and on Q, 1) such that

”u“cv%nflnﬂ,2m+u(o)
(48) < elts —t){Iflloeg) + luollcamsomy

X lgsll jzmtems oo, (5)}°

Before giving our proof of this theorem we will give an abstract version of
problem (4.1) in order to apply the results of section 2.
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5 The abstract setting

We shall use the following notation

A= E a’Y(')Dz’ BJ: E Jﬁ() a:?.]_l'“,m

[v|<2m B|<m;

(5.1) F) = ft,-), gi(t) = gi(t,"), t € [toyta], G =1,+++,m
u® =y, u®) = Ay 4 f(’“‘l)(to), k=1,-- [M]

where f(*)(t) = DFf(t,-), so that problem (4.1) can be written as

u'(t) = Au(t) + f(1), t € [to, ]
(52) u(to) = Ug

Bju(t) = g(t), 7 =1,---,m; t € [to, t1]
and the compatibility conditions as

92 ¥R
(5.3)  Bju® =g®(t), j=1, -, m; k= 0,...,[M]_
2m
By virtue of theorem 1.2, theorem 3.1 is equivalent to
Theorem 5.1 Let assumptions (4.2)-(4.3) hold. Assume that
f € Cam ([to, t1]; C(Q)) is such that

(5.4) _
{ f® € B([to,ta]; C*7*4(Q)), k=0,---,[5%]
(5.5)  up € C?™T(Q)

and assume that for each j =1,---,m

5 gj € sztl:"-m.’2m+°’_m"([to,t1]; C(T)) is such that
g™ € B([to, t.]; C?m+e=mi=mK(T)), k=0, .-, [Znbasmi),

22



Moreover suppose that, defining u¥) by (5.1), conditions (5.3) hold. Then
problem (5.2) has a unique solution

(5.1) u € C* 3 2m+e ([t 1,]; C(Q)) such that
’ u® ¢ B([to, t1]; C2m+e=2mk(Q)), k = 0,-- -, [2mta]

2m
and there exists a continuous and increasing function ¢ : Ry — Ry (depend-
ing also on bounds of the norms of a, bz and on Q,1n0) such that
il 2t 2mia ) < e(ts = t) {11l 5.0 ) + [uollcomtaca)

m
+ £ ol mspems o,

,(s)}'

In the proof of this theorem we shall use also known results about gen-
erators of analytic semigroups, characterization of interpolation spaces and
Holder regularity for elliptic equations which we collect in the following the-
orem.

Theorem 5.2 Let (4.2)-(4.8) hold and let A and B; (j = 1,---,m) be de-
fined by (5.1).

(i) If X = C(Q) is given the sup-norm and

D(A) = {pe N W™r(Q); Ap € C(Q); Bjp =0,

p>1

then A : D(A) C X — X satisfies (3.1), where w,n, M depend on bounds of

the norms of a., bjz, and on §, 1.

(11) For each 6 €]0,1[ such that 2mf ¢ IN we have
(5.10) D,(8,00) = {p € C*™(Q); Bj =0 if m; < [2mb]}
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and the C*™°-norm is equivalent to the D(6,00)- norm.

(11i) For each k=1,---,2m — 1 we have

(5.11) CE(Q) = {p € C¥Q); Bjp =0 if m; < k} — DA(2k ,00)

where CE(Q) is given the norm of C*(Q).

(iv) D = {p € ﬂ Wme(Q); Ap € C*(Q); Bjp € C™+a=-mi(T); j =
l,---,m} C C’z"”""(ﬂ) and there exists cg > 0 such that

(5.12) ||80||c2m+°((1) < CG{HA‘P”Ca(ﬁ) + ||<P||C(s‘2) + Z ||Bj‘P”c2'"+°-'"j(r)}-

=1

Proof. (i) is a consequence of the results on the resolvent of A proved in
[GG] and on the estimate of ||(A — A)~!|| demonstrated in [St] and [AT]. (ii)
is a result of [AT] and (iii) follows from the characterization of Dy (5, o)
proved in [A]. Concerning (iv) one must observe that the results of [ADN]
prove estimate (5.12) whereas the inclusion of the set D in C?"+%(Q) is a
consequence of the existence theorems proved in [GG]. 0

6 An extension operator

As mentioned in the introduction the theory of semigroups of linear operators
cannot be applied to problem (1.1) when g; # 0 for some j = 1,---,m. For
this reason we need an operator N satisfying (1.12): its existence will be
proved in three steps. We can suppose that n > 1 because when n = 1 the
operator N can be constructed by using suitable polynomials.

The first step is essentially lemma 10 of [Se]:

Theorem 6.1 Givenp € CP(IR"™Y) suchthat [ @(ty,-+,tp_r)dty -+ dt,_y =

Rn—l
1, set for each k € IN and f € CO(R™™"):
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Fk(yl""7yn)
k
(6.1) =%i‘ J oty )

* Rn—l
f(yl + tlyna tyYn—1 + tn—lyn)dtl t dtn—l-

Then we have:
(6.2) Fr € C*(R")
and

0 if|l| <k and 1 (0,---,0,k)

DJI/Fk(ylv’”’yn—l’O) == )
f(yla'”,yn—l) Zfl= (0,,0,k)

(6.3)

for (y1,-++,Yn-1) € R*L.
Moreover for each m € IN and 0 € [0,1]:
(6.4) feC™R"Y) = F € CHH™H(R™).
As second step we prove the following result.

Theorem 6.2 For each j = 1,---,m there exists N; € L(C°(T);C™i(Q2))
such that setting v; = N3 for ¢ € C°(T), we have

(6.5) Dlvj(z)=0, z€l, € N [l] <m,
(6.6)  (Bjvj)(z) =¢(z), z €T.

Moreover

(6.7) N; € L(C™(T);C™™i(Q)), Vr € [0,2m + o — m;].

25



N o
Proof. If U B; is an open covering of I' (see the notation of section 0) let
=1

0i = {@iry i }(i = 1,--+,N) be the C*™**-diffeomorphism of B; onto
B. Then setting forz =1,---,Nand y =1,---,m

68) w@= ¥ by ey el oernp
= 1

we have v;; € C*™t*=™(T'N B;). Given ¢ € C"(T') with r € [0,2m + & —m]
we set

1[)[(,9,-_1(3,/1, *yYn-1, 0)]
Yiilei '(y1s++ y Yn-1,0)]

(69) fij(yh' o syn—lao) = ) (yla vy Yn—-1, 0) € %

As fi; € C"(X), we can define (by virtue of theorem 5.1) uj; € C™*™i(IR")
such that for each (y1,--+,¥yn-1,0) € £ we have:

Dl 3 (yl, : ayn—l’o)
(6.10) =0if || <mjand ! #(0,---,0,m;)
fij(yla yYn-1, 0) ifl= (0’ te ’O,mj)-
Let ¢ and & be the extensions of ¢; and ¢; obtained by setting ¢} (z) =
(0,---,0) and &*(z) = 0 for z € O\ B;. We will prove that
N

(6.11) vi(e) = 3 € (@)uj(¢i(@), @ €0

1=1
satisfies (6.5)-(6.7). Let us fixzo € T'and let No = {i € {1,--,N}; 20 € B}

there exists r > 0 such that B(zg,r) = {z € R", |z — 20| <r} C N B,
1€Np

(6.12) wv(z) = Y &i(z)ufj(pi(z)), = € B(xo,7) N Q.
1€Np

Hence for [ € IN" such that || < m; we deduce (6.5) from the first of (6.10),
while for |/| = m; we obtain
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[ (Bjvj)(zo) = X bip(zo) & DPLE(w)ul(pi(e))lemso
|Bl=m; 1€Np
9™ ul;(y)

(6.13) < = 1_2}3% &i(o) IﬂEmj bi(20) (=575 Jy=gi(ao)

(M)h ,,,(8wan§x2)1n

oz, r=x9 Oxn r=x0 "

\

Hence (6.6) follows from (6.9) and (6.10). (6.7) is a consequence of the
definition of u; and the regularity assumptions on I'. ]

We can prove now the existence of the extension operator N verifying (1.12).

Theorem 6.3 Given s =1,---,m there exists

M, € L(]] C*~™(T),C%ms(T)),
(6.14) i=1
VO € [ms,2m + a

and such that setting

(6.15) N1, tm) = 3" NoMi(hry- - ,b0)
s=1

we have

N € L([] C?m+7=mi(T),C?m+ (@),
(6.16) J=1

Vo' € [0,a]
and

(6.17) B;(N(¥1,--+,¥m))(z) =¢j(z), z€l, y=1,---,m.

Proof.  Let us first observe that by virtue of (4.3) (a) we have for each
g=1--- m:
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(6.18) B, € L(C%(Q);C?~™(T)), 8 € [m;,2m + a.
For each (r,s) € N? with 1 < r < s < m we define the operator H,, by
induction:

(6.19) H.,=Ip, 1<r<m

(where Ir is the identity in the set of functions defined in I') and
h—1

(620) Hr+h,r = —Dr4h Z Nr+jH'r+j,r-
7=0

From (6.7) and (6.18) we deduce, for 1 <r < s < m:

(6.21) H,, € L(C*~™(T);C% ™ (")) if 0 € [ms,2m + al.

Let us define now the following operators

4

M (1) = Hia(¢1)
M;(31,%2) Hj 1 (1) + Ha ()

(6.22) ¢

L Mm(d)la Tty d)m) o Hm,l("pl) +---+ Hm,m(d)m)-
From (6.21) we obtain (6.14) which implies (6.16). To prove (6.17) let us fix
(6.23) o, € CHI-mi(T), j=1,---,m, 0 € [0,q]

and set
k

(624) uk:stMs(d)l""a"/)s)a k=1,---,m.
s=1

By using properties (6.5)-(6.6) one proves by induction that
(625) Bjuk = 1/)_,‘ for 1 S] S k

which, for k¥ = m, coincides with (6.17). i
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7 Proof of theorem 4.1 for o < 2m

From (5.6) and (2.12) we deduce

2m+a—mi—h
(7.1) 9; € C—m — ([to,t1]; C*(T)),
heN, 0<h<[a] +2m—m;
so that from (6.7), (6.14), and (7.1) we obtain (for s =1,---,m):

(7.2) NoMy(g1(-), -+, 95(-)) € B([to, t]; C*"*+*(R2))
NC7 ([to, t); C*™(R)) N C =5 ([to, 11]; C™ ().

Hence if
(73) my<---<my<a

there exists, for t € [to, 1]

d

_NsMs(gl(t)a T ags(t)) = NsMs(g;(t)’ e ,g;(t))

(14) =

and

N1 Mi(g1(+)) € Cm ([to, t1]; C°(Q)) if my = 0
(7.5) NoMy(9i(-), -+, 94(-)) € C%om* ([to, ta]; Da (52, 00))

2m?

if1 <m, < a.
Actually, from (5.11) we get that the subspace of C™+(2) defined as
(7.6) {p € C™(Q); Bjyo =0if m; < m,}

is continuously embedded in Dj (2, 00) if m, > 1. Moreover from (6.5) we
deduce that for each u € C°(T'):
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(1.7)  (BjNsu)(z) =0on Qforj<s

and from (5.10) we obtain

ms

(7.8)  Da(

2m,oo) = {u € C™(N); Bju =0 if m; <m,} for 0 < m, <2m

which implies (7.5)(2); while (7.5)(1) is a consequence of (7.2) with s = 1.
Let us define for each ¢ € [to, ]

(79) n(t) = N(gl(t)7 U ’gm(t)) = i NsMs(gl(t)’ e 7gs(t))

s=1

0ifa<my
(7.10) { é N,M,(g1(2), -, g5(2)) if 1 <
na(t) = n(t) — ma(2),

where p is the greatest integer § < m such that m; < a. From (7.2) and
(7.4) it follows that

i) {7 € B([to, ta]; C***()) N O ([to, 1a]; C*™())
An € B([to, t,];C*(Q)) N C3 ([to, t1]; C°(D))

(1.12) {n ¢ Bllukem@)
An; € B([to,t1];C*())

ny € C'([to,11];C°(Q))
(7.13) ny € B([to,tl];C“(Q))
ni(t) = éleMs(gi(t),'--,g;(t)), t € [to, ta], if M1 < cn.
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As we mentioned in the introduction, we will prove that a solution of prob-
lem (5.2) can be obtained by the representation formula (1.10) with some
adaptations due to the compatibility conditions that must be satisfied to get
solutions having the required regularity. More precisely we will solve the
three problems

(

v'(t) = Av(t) + f(t) + An(t) — ni(to), t € [to, ]
(7.14) < v(to) = uo — n(to)
B_,'U(t) = 0’ .7 = 17' c,m, te [t07t1]

w'(t) = Aw(t) — Any(t) + ni(to), t € [to,ti]
(7.15) < w(ty) = ny(to)
Bjw(t) = Bjny(t), j =1,---,m, t € [to, 1]

2'(t) = Az(t) — Any(t), t € [to, 1]
(7.16) < z(to) = nz(to)
sz(t) = Bjnz(t)’ .7 = 17' ce,Mm, te [tO,tl]

\

and will prove that
(7.17)  u(t) = v(t) + w(t) + 2(¢), t € [to, 1]

is the solution of problem (5.2). Uniqueness of the solution is a consequence
of theorem 3.1.

To solve the three problems we will apply the abstract results of section
3 with X and A defined in (i) of theorem 5.2.

Let us first consider problem (7.14). To apply theorem 3.1 with 6 = >
we must show that

(7.18)  f(-) + An() = ni(to) € C7m ([to, u]; (D))
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(7.19) wuo —n(to) € D(A)
and

(7.20)  A(uo = n(to)) + f(to) + Anf(to) = nf(to) € Da(5—,00)

where

(7.21) DA(%,OO) = {p € C*(Q); Bjp =0 if m; < a}.

Now (7.18) follows from (7.11) and (7.13); (7.20) is a consequence of (7.12),
(6.17) and (5.3). To prove (7.20) we can use (7.11)-(7.13) and the fact that
due to (6.25) and (5.3) we have, for m; < «

B;(Aug + f(to) — n(to))

(7.22) = B;(Auo + f(to)) — B; 821:1 N, M,(g1(t0),- -+, 95(t0))
= Bj(Auo + f(to)) — g;(t0) = 0.

Theorem 3.1 gives now a solution v of (7.14) such that

v € CMam([to, 11]; (), v' € B([to, u]; C*(Q))

(7.23) i _
v(t) € O WHH(Q), Av(t) € C(Q), 1 € [fo, ]

where we have used the fact that Dy (5%, 00) > C%(12) (see theorem 5.2). To
solve problem (7.15) we write

P

(7.24) ni(t) —ni(to) = 3_s(t), t € [to,t]

with
(7.25)  @,(t) = N, M,(g1(t) — g1(to), - -+, 95(t) — g5(t0)), t € [to, ta]
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and for each s = 1,---, p, we consider the problem

w;(t) = AwS(t) — ps(t), t € [to, 1]
(7.26) ws(te) = 0
ijs(t) = O’ .] = 17"',m7 te [tht1]~

If my = 0 we have ¢, € Cm([to,t,];C°(Q)) by virtue of (7.5): hence from
theorem 2.1 we deduce the existence of a solution w; to (7.26)(1) such that

wy € CY[to, t1]; X),
(7.27) Aw, € Cﬁgﬁ([to,tl];X),
wy € B([to,t1]; Da(5%, 00)).

If my > 0 we get from (7.5) that ¢, € C%om ([to, t1]; Da(32, 00)) for each
s=1,---,p. Hence from theorem 3.2 we obtain

Wy € Cl([to,tl];X)a
(7.28) { Aw, € Crm([to,t1]; X),
w, € B([to,t1]; Da(5%,00))

s

where w, is the solution of (7.26). Setting
P
(7.29) w(t) =D ws(t) + ni(t), t € [to, 1]

=1

we obtain a solution of (7.15) verifying the same properties as v (see (7.23)).

We can consider problem (7.16) when ns(t) # 0 i.e. when p < m. In this
case we set foreach s=p+1,---,m:

(730) ¢8(t) = NsMs(gl(t) - gl(tO)a e ’gs(t) - gs(tO))? te [tO,tl]
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and first we solve problem

(7.31) {yi(t) = Ay,(t) +vs(t), t € [to,t1]
ys(to) = 0.

We have

(1.32) 9, € C*57™ ((to,t]; Da( 5, )

by virtue of (5.11), (7.2) and the fact that B;N, = 0 for j < s. Hence
theorem 5.2 gives a solution y, of (7.31) such that

(7.33) {Ays € C'am([to, t1]; X),
Ay, = (Ay,)' € B([to,t1]; Da(5%,0)).

Then, setting

(134) (1) = —AC S wlt) +nalto), ¢ € [to, ]

s=p+1

we obtain a solution of (7.16) verifying the same properties of v (see (7.23)).
We conclude that v = v + w + z is a solution of (5.2) because B;jn(t) =
gi(t), 3 =1,---,m, t € [to,t1]. Moreover we have:

u € CH¥5 ([to, 1] C(Q), ' € B([to, u]; C*(Q)
(7.35) u(t) € N W2mP(Q), Au(t) € C*(Q), t € [to, ta]-

p>1

As a < 2m, to prove (5.7) we only need to show that:

(7.36) u € B([to, ta); C*™**())
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and this can be done by using (iv) of theorem 5.2, by virtue of (7.35) and
the fact that B;u(t) = g;(t) € C*™+*=™(T), t € [to, t4].

Estimate (5.8) is a consequence of estimates (2.11), (2.13), (3.7), (3.13),
and (5.12). O

Remark: From (3.5) it follows that the following representation formulas
hold for each ¢t € [to,t1]:

(7.37)  w(t) = el (uo — n(to)) + / eI (f(s) + An(s) — ni(to))ds
(7.38) w(t) = ny(t) — / =M (n! (5) — ! (to) ) ds

(7.39)  2(t) = na(to) — A / =9 (ny(s) — ng(te))ds

and so, since ny € C([to,t:1]; X), we deduce that (1.10) holds, i.e.

¢

u(t) = elt=t)Aye + [ e(t")A(f(s) + An(s))ds

(7.40) L

— A [ elt=9Mn(s)ds, t € [to,t1]-
to

8 Proof of theorem 4.1 for a > 2m

We use the notations of section 6 and we set
(8.1) a=2mk+o, keN, 0<o<2m.

The result will be proved by recurrence on k. Suppose k = 1 and consider
the problem obtained differentiating formally (5.2):

35



y'(t) = Ay(t)+f'(t), t € [to, 1]
(8.2) y(to) = Auo+ f(to)
Bj (t) = g;(t), .7 = ]-7' T, m, te [t07t1]

Since the conditions of the case a < 2m are verified, we deduce the existence
of a unique solution y such that

(.3) {y € O3 ([to, ] C(Q)) N B(lto, 1] 2+ (@),
' y € B(to,t); C7(Q))

and the estimate

191l oo+ 2 o rricayy T 1Yl B0 cnic2meo @)
1Y | B(1to 1307 (@))
< ¢o(ty — to){[|Auo + f(to)llc2m+a() + ||/ |llo2% 0 ()

m
/
\ +j§1 |||gj|||C=""+2#1,2m+a_mj(S)

holds, where ¢, has the same properties as ¢ in (5.8).

We want to show that y = u’, where u is the solution of (5.2). To this
end we fix t €]to, [, we define for each h €]0,t; — ]

(8.5)  wi(t) = h7(u(t +h) — u(t)), t € [to, ]
and we define similarly fj, and g;5. Setting ux(to) = uor we have for each h:
up(t) = Auy(t) + fa(t), t € [to,1]

(8.6) up(to) = uon
Bjuh(t) = g]h(t)$ J: 1,"'am; te [t03ﬂ-

Taking into account the representation formula (7.40) we obtain:
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u(t) —y(t) = et (ug, —u'(to))
(8.7) + [ eI [fi(s) — f'(s) + A(ni(s) — n'(s))]ds
-A ftto e(t=9(n,(s) — n'(s))ds

where

(88) { nh(t) = N(glh(t)a e ’gmh(t)) = h'l(n(t —- h) — n(t)),

t € [to,1].

As u, f and An are in C'([to,t1]; X) (see (7.11)) we have }llirrcl) uor, = u'(to)
and Iljn& fr(t) = f(t) uniformly in [to,%]. Moreover from (7.11) we deduce
n € C'*2m ([to, t1]; X). Then for € €]0,0[ we have

(8.9)  Jim linn = 'llo s g1, 7,5):

Now for t € [to,t] we have

(

Aft et=2)A(ny(s) — n'(s))ds

(8.10) { = tf Aelt=9A(n,(s) — n'(s) — na(t) + n'(t))ds

+(ETN —1)(na(t) — n'(1))

\

and so from (8.7) we obtain

[ un(®) —y®)lx < M{Jluon — ' (to) | x

+(t — to)|| fn — f'll B(1t0,3:)
(8.11) +H A — )| Bo, a0}
+2me M;[n), — n’]Cfs,,—,([to,ﬂ;X)

(= to)zm + (M + 1)l — /|| B0
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where M = sup ||| x) and My = sup |[[tAe™ || (x).
to<t<ty to<t<ts

This shows that ’llin(l) ur(t) = y(¢) uniformly in [to,?]: as t is arbitrary in
lto,t1[ we have u'(t) = y(t) for to <t < t; and, by continuity, also for t = t;.
From (8.3) it follows that

u € O3 ([to,t1],C(Q)),
(8.12) u' € B([to, t1];C™™ 7 (Q)),
u" € B([to,t:];C7()).

Moreover, since Au =u' — f =y — f, from (8.3) we deduce also
(8.13) Au € B([to,t1];C*™t7(Q))

and Bju = g; € B([to,t1];C*™*°~™i(T')): now from (iv) of theorem 5.2
we get u € B([to,t;];C*"+?(Q)); this is sufficient to conclude that u €

C* o 2mte () by virtue of theorem 2.2. Estimate (5.8) follows from (5.12)
and (8.4), and the statement is proved for k = 1.

Assume now that the statement holc_ls for k=0,1,---,k—1 with k > 2:
we will prove that it holds also for £ = k. We know that (8.2) is satisfied by
y = u’ and (also by virtue of theorem 2.2) that

[ 1" € CF1435 ([to, 11]; C(Q)),

k gt ~ - )
(flt € B([to, t,]; C*™*=1=H+o(Q)) k=1,--- k-1
(8.14) Auo + f(to) c CZmE+a(Q)

%€ﬂ+ 7 ([to, ta]; C(I)),

‘ mﬁ‘ € B(lto, ti]; C2F-Rto=ms(T)), k=1, -+, [k + 5t

Moreover, due to (5.3), the compatibility conditions are satisfied by f’, Auo+
f(to) and g. By assumption the statement is true when k = k—1 and so v’ €

O3 [to,a); O(0)) and LY € B(fto,tl; CmEH+(@) for k = 1+, F,
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so that u € C*¥t1%3% ([to, 1]; C(R)) and u®) € B([to, t,]; C?*™F+1=-R+o(Q)) for
k=1,---,k+1. Asin the case k = 1 one proves that u € B([to, t1]; C?™*+D+o(Q)).
Estimate (5.8) with @ = 2mk + o follows now easily, and the statement is
proved for k = k. O

9 The time dependent coefficient case

In what follows (2 is again a bounded open set of R™ with C?™** boundary
I with m € N and @ > 0,a ¢ IN. Given T' > 0 we set Qo = [0,7] x Q and
So =[0,7] x I and we consider the problem:

[ Dau(t,2)= T  ayt,2)Dlult,z)+ f(t,2), (t2) € Qo

[v|<2m

(9:1)  § u(0,2) = up(z), € Q

IE bjﬁ(t7x)D£u(tvx) =g]'(t,$), .7 =1,---,m, (tvx) = SO- !
Bl<m;

\

We assume that

f,a, € C3m*(Qo) for each vy € IN* with || < 2m,
2m4+a—m,

iy bjg € Czm o2mta=ms( Gy

for each # € N" with |3| <m;, j=1,---,m,

Ug € C2m+a(Q)

(9.2) A

and moreover that

(0.3 for each t € [0,T], a,(t,-) satisfy (4.2)(b)(c)
. and bjs(t,-) satisfy (4.3)(b)(c) with 7o independent on ¢.

Also in this case we look for solutions u € C*3m2™+%(Q,): this implies (see
[S]) that the following compatibility conditions hold:
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¢ k
> () = DEb(0,2)Dfu(@) = Dig;(0,2),

r=0 ‘"7 |g|<m;

zel; k=0,-- [M‘L]]——l

where we have set for each z €

ul(z) = uo(2)

WW(z) =5 () 8 DF17a,(0,2)D7u(z) + DE(0, ),

s

s=0 |v|<2m
| k:l,---,[z%nﬁ].
We have also
2
9.5)  u®(c) = Dru(0,a), k=1,.-.,[22F m+a] zef

In this section we will prove the following result:

Theorem 9.1 Let assumptions (9.2)-(9.4) hold. Then problem (9.1) has
a unique solution u € C™5m>™+%(Qqo) and there exists a continuous and

increasing function ¢ : Ry — R4 (depending also on bounds of the norms of
., bjg and on Q, 1) such that

Hullcz—'ﬁn—;inﬂﬂm-}-a(Qo)
96)  § <UD lotragyy + Nollozmsaay

+JZ=31 ||gj||c2ﬂ‘;;n_-m,2,,,+a_mj(so)}-

Proof. We will prove the existence of § > 0 such that if vy € C?™*+*(Q), [to,t:] C
[0,7] and t; — to < 6, then problem
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[ Do(t,2)= = ay(t,2)DYo(t,2) + f(t, ),

lv[<2m
(t,z) € Q = [to, 1] X O
(9.7 < w(tg,z) = vo(z), T €N

Y bis(t,x)DPo(t, ) = g;(t,z), j=1,---,m,
[B]<m;

| (t,z) € S = [to,t1] x T

has a unique solution v € C*%5=" 2mta(@), depending on f,vy and g; in the

sense of estimate (9.6), provided the following compatibility conditions hold

4

k
x (!) ¥ Dibis(to,2)DEvi(2) = Dfg;(to, z);

|B1<m;
zeT; kzg,...’[mg#i]; j=1,---,m

(9.8) { where we have set for each z € Q
k=1

v(@) =% (}7') T Df'"a,(to,z)DYvs(x) + Df f(to, 2);

a=l) lvI<2m
k=1,..- ,[Z_Tﬂ_a

\ 2m 1°

This will imply the statement because we can first choose vy = ug and t5 =0
and obtain a solution in [0,6] x Q: if § < T, taking vo = u(é) and t, = 6
conditions (9.8) are satisfied so that we can extend the solution to ([0,26] N
[0,T]) x Q: after a finite number of steps we obtain the conclusion. As in
section 5 we write (9.7) in an abstract form

V(t) = At)(t) + £(2), ¢ € [tort)
(99) v(to) =g
Bju(t) = g(t), = 1,---,m; t € [to, 1]

where for each t € [tp,t;] and j = 1,---,m we have set:
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A(t) = X a‘Y(t")ng Bj(t) = X bj (t")Dg
(9.10) lvl<2m 18I<m;

f(t) = f(t, '),gj(t) = gj(t, ')a ’U(t) = v(t’ )

We will solve (9.9) by a perturbation method by means of the existence
results and the sharp estimates of the corresponding time independent case.
Setting

(9.11) a=2mk+o0, k€N, o €]0,2m|

we list some consequences of assumptions (9.2).

There exist @ > 0 depending on 2, T and the norms of a., such that:

(

(i) A(-) € Cam ([0, T]; L(C?*™(),C°(2))) and
1Allo-25 0,1y com @, co@y) < @
(ii) for k =0,---,k and t € [0, 7],
AR)(t) € L(Cot?m=2mk(Q); Co~?™4((Q))) and
(9.12) ¢ ||[f}(k)(t) — AB(r)]plga-2mr ) i
< a{llellemi-rrnten@) + (= 7)o [ploatam—am (g
for each ¢ € Cot2m=2mk(Q) and 0 < r <t < T

(iii) for 0 < k< h <k and t € [0,T],
A(k)(t) = L(Coz+2m—2mh(Q),Ca—2mh(Q)) and

”A(k)(t)IlL(Cq+2m-2mh(ﬁ)’Ca—2mh(ﬂ)) <a

\

and for each j = 1,---,m there is i)j > 0, depending on €, 7" and the norms
of b;s such that

42



() By(-) € C™ a2 ([0,T]; L(C™ (9
1Bl

,C%T))) and

J

>

I/\\-f

c—ﬂ—‘me (10.T}:L(C™3 (2),C°(T)))

(ii) for k=0, [2mba=mi) = 41 4[5
k a+2m—2mk+m; [ O a+2m—2m
B! )(t)eL(C ramoamitms (), Catimmimk(T))
A L{C*-2nt-0(Q)), C*—2nk=1)— (T} and
(9.13) S B () — B (1))l gy -amisy

< bi{llellgamep-rsnr411@y + (t = )2 [ploa-amie-1) }
for each ¢ € C““zm("’l)(ﬂ) and 0<r<t<T

(iii) for 0 <k < h < [PEEM) = k41 4[] and t € [0,7],
B;k)(t) & L(Ca+2m—-2mh(ﬂ),Ca+2m—2mh—mj( )) and

k
1B ()l casam-ams @y osammns ), < by

\

Let us set
= {v e C%a([to,ta]; C()),
(9.14) v® € B([to, t1]; C?m+e-2mk((QY)),
v(k)(to) = Uk, k= Oa,]}_*' 1}

where vy, is defined in (9.8). For each v € Y let us consider the perturbed
problem

u'(t) = A(to)u(t) + [A(t) — A(to)]v(t) + f(1), t € [to, ]
(9.15) u(to) = vo

Bj(to)u(t) = [Bj(to) — B;(t)]v(t) + g;(t), ¢ € [to, ta].
Setting for t € [to, t1]:
@m){wm = [A(D) = Alto)le(t) + (1)

pi(t) = [Bj(to) — Bi(H)lv(t) + g;(t), 7 =1,---,m
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and recalling that for j = 1,---,m we have

2m+a—m,

(9.17) Y C Con([to, t1]; C*™(Q)) N Czm 2mFemi([ty 1,]; C™ (1))

we get

(9.18) { o C%([to’tl];co(mz’ )
Q) B([to, t1];C*~2m*(Q)) for k =0,---, k

m

¥ € CTE([to, t];CO(T)),
(9-19) {9 € B([to, t,); Coma=2m=1)(T))

fork=0,---,[”‘;—;mi] and j =1,---,m.

m

Therefore the assumptions of theorem 4.1 are satisfied by the data ¢, %;, vy,
because also the compatibility conditions (5.3) are verified: in fact we have

pW(t0) = 55 () AC-D(to)o, + O(to), k=1, 5]

(9:20) § pB(ty) = _f; (5) BE(to)v, + ¢ (t), j =1,-+-,m;
r=1

k=1,...,[2mi5;;mi]

so that setting

u(©® = y,
(9.21)
u® = A(to)u(k—l) 4 cp(k—l)(to), k= 1,...’[2_m-m]

2m

we get from (9.20) uk) = v, k [ﬁi-_a_], and so from (9.8) and (9.20)
we deduce, for j =1,---,m and k =0,- [2m+a my].

b (&
Bj(to)u™ — 9™ (to) = Bj(to)or + 3 (r) BE " (to)v, — g3 (to) = 0
r=1
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so that (5.3) holds. We are now able to apply theorem 5.1 and deduce the
existence of a solution u € C*5"
T:Y Y
(9.22)

7Tv = u, where u is the solution of (9.15) .

Zmta(Q) of problem (9.15). Let us define

We will prove that 7 is a contraction on Y in the norm ||| - ”IC2mia,2m+a
provided t; — to is sufficiently small. Let us set ||| - |”c:‘3‘n'v°'(Q) = ||| - |||« and
- Mg stsiagsy = Il - Mla-

First from (2.13) we get
[2m+a]

(9.23)
h=0

> Nollamggmn ooy < el

cee, M and t € [to,tl]I

Now let wy,w; € Y, and set forz =1,2, 5y =1,
[A(t) — A(to)]wi(?)

(9.24) { @i(t)
¥i; (1) [B;(to — Bj(t)]wi(t)-

From estimate (5.8) we obtain

17 w1 — Twall2m+a
(9.25)

< (D) {lllgs = ealle + 5 ss = b llamsam, )
Recalling that

(9.26) el =

E k)

Z 9P lp o apcm—2me@)
k

+ [ )]cf’ﬁ([to,n];c%m)
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we consider first the case £k = 0 i.e. a < 2m. From now on we denote by ¢
a generic function independent on [ty,t;] C [0,7] and on wy,w, € Y, and by
p: Ry — R, a continuous function with p(0) = 0.

From (9.12)(i)(ii), (9.13)(i)(ii), and (9.14)(i)(ii) we get
(9:27)  |ller = p2llla < - p(ts = to)l|lwr — welllzm+a
(9'28) |”¢‘1J - ¢2j|||2m+a—mj <c- p(tl - tO)”lwl - w2|”2m+a7 .7 =1,---,m

and so from (9.25) we deduce that for ¢; — ¢o small 7 is a contraction; hence
it has a unique fixed point v € Y which is the unique solution v of (9.9) such
that v € C m ([to, t1); C(€)) and v® € B([to, t;]; C?m+=2m¥(Q)) for k =
0,---,14[5%]. By using again (iv) of theorem 5.2 we get u € C’zzﬂmgﬂ’”‘*"‘(Q),

and the conclusion follows. O
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