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[?-Decay Rates for Homogeneous Wave-Equations

WoLE vON WAHL

Abstract. This paper deals with the question of the asymptotic behaviour
of the solution of Cauchy’s problem for

E}z

= —Au+mu=0, m=20,
cl
if t tends to infinity. This question is of particular interest for the behaviour in
the large of the solutions of nonlinear wave-equations.

0. Preliminary Remarks and Notations

In this paper we calculate the decay-rates of the [P(R"-norms, w=p=2,
of the solutions of Cauchy’s problem for
-
g~ u
a2 —Au+mu=0, m=z0,
T

if ¢ tends to infinity. The space dimension n is supposed to be greater than or
equal 3. Since the papers of Strauss [4] and Segal [3] appeared it was clear that
such estimates are of some importance for the question of the behaviour in the
large of the solutions of Cauchy’s problem for
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with a nonlinear term F. A great part of our estimates deals with expressions
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[(=a+m) ¥ sin(—d+m)*(t—s) f(s)ds,
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which are occurring in the treatment of nonlinear problems.
The method employed is similar to that outlined in [7], where we treated a
perturbative problem for the equation
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in higher space dimensions. It essentially uses the well-known formulas for
the classical solution of the homogeneous wave-equation which can be found
in [2].

We introduce some notations: N is the set of all positive integers, R ™ is
the set of all nonnegative reals. Let
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For n-tuples 2 =(a,. ..., %,) of nonnegative integers we set

n L] n
] = Z,“‘" DP=[]D¥, x*= ﬂl.\:ja xeR".
Y= J=

J=1

H%"(R"), 1 £p< =, keNuw [0}, is the Banach-space of all functions u with
distributional derivatives up to the order k lying in [7(IR") (continuous and
bounded for p= ) with norms

g pimy =1 2 1D* el ey
fal <k

and
el s e = 2. Sup [D* u(x)|

—

|aj <4 x=R"

respectively. For p=2 we write .||, instead of [, . The L*(IR")}-norm
is denoted by ||.|. Let X be a Banach-space. C'([a. b], X), —w <a<b< + =,
is the Banach-space of all v-times continuously differentiable mappings

u: [a, b] = X with norm
d*
(dr* -u) (”"

Cio(R*, X) is the set of all v-times continuously differentiable mappings
u: IR" — X. For a subset G < R"” we denote with C"(G) the Banach-space of all
functions having continous and bounded derivatives up to the order v.

At last we set

sup
i=10 fela.b]

K, (M={x|xeR" [x—y|<p}. p>0.yeR"

¢y, €5, ... are positiveconstants which are independent of the occurring functions.

I. The Case of Odd Space Dimensions and Vanishing Mass

Let e Cp~ "2+ 2(R"), pe C~ "2 1(IR"). The solution of the homogeneous
wave-equation

-

-

3
— u—Au=0
ar-




[7-Decay Rates for Homogencous Wave-Equations 95

i
with initial-data u(0, x)= @(x), (—:—r— n) (0. x)=1(x) is given by
i

{n— 312 ~y
P(x, )= Z (v+ Da,t ( g Q,) (x.1)

o tf‘

v

in—=3)/2 . vt 1 &
+I Z i, f (({WQ,)(A‘.I}+(E—F;Q3){.\'.H)

v=1)

(see [2]. p. 394) where the a,s are constants and where

LR s
0,(x.0)=—> [ olx+1)d¢,
f.fJ" O

1
[U(x+t8)de.

o, 1

Q:(x, )=

Q,_ denotes the unit-sphere in the n-dimensional Euclidean space R", o, is its
surface, d¢ is its surface-element. Carrying out the differentiation in the formula
for @ and using the theorem of Gauss in the form

[faOEde=t"Y |  fxydx, feCH(xIt). >0,

(118 (x|t Oy

one gets the estimate

|P(x, 1) = ¢, {IQ,(.\', 0O+t |Q,(x, 1)

(n=3)/2
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Moreover, we have
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Letusregardaterm ¢~ | (D*@)(x+y) y"dy. Let 4, p20,1>p, 1 Z4+p. The
Kl
Hausdorff-Young inequality immediately furnishes the relation

"f_m j (D=¢Hx+3'}}'?d.""urn-A—mﬁa"lé”D’@”H’“'"’l‘ﬂ"lr-m 97 a0 <0 et
K () .
gczf"“_”“D"fﬂnuru—mm"r

From this we obtain the inequality
||¢{f)“ A ‘ulgnu]-f—‘-'s rrslI— Ay={n=1j/2 [I“(H—llal l|¢?||;,|m~ e
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1€]aSin- 312 +1

We remark that u=0, A=1, 1/(1 —A— )=+ = is admitted as the preceding
calculations show. So we get the results of Chapter LA.of [6] as a special case.
We will state our results in a form which is especially suitable for non-linear

situations: Let a mapping
Ut ]R+ e Cﬁ;i—.!:-;'l-d-!{mu}

be given with supp v(r)= K, (0). p(r) a positive continuous function. Moreover,
let u(.}EC‘f:,Q[lR*.H'"da'm”“""{m"]). keN.
Then we have for all multiindices =, |x|<(n—3)/2+2+k.
(D*0)(.)e Cr (RY, LA(R"), g1,
and we get the following theorem:
Theorem 1. Let 1 /(1 —u—2)Z2n/(n=2)with 1> p=20,12i>0, 1 Z i+ p, let
o IR+ _.Hlfl-.’-lr'2+2+i.-;t:{IRnL kEN.

be a mapping with the properties listed above. Then we have the inequalities (12 1)

I
f(=4)"*sin(— ) (t—0)v(o)do
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Proof. In order to prove (2) we split up the integration into two parts: one
from0tot— 1 and one from ¢ — 1 to . For the treatment of the first part one only
has to use (1). For the second part we have to use the estimate (ge H™™ 1+ 2 (IR"))

( : i I " 1 __2.1',71141.—ui
i ey | e, S Y{n—=1 5 || g e
o S b 1=d=p n-=2 - K
ilgil,_. -2 :qm;_”gilc'ﬂlni H-Zii:lg 0x;
1 2n
2] (1—d=p)
a=z=ml=ta==20) { n=1 L2l Og " e
LeillPelam T T {nﬁ'ﬂ n] ax :

which follows from a well-known Sobolev-inequality and from Hilfssatz 4 in
[5). Inequality (3) follows directly from (1).

Remark 1. For 2= 511 —J— )< 2nf(n—2) the right side of (2) changes into
i

Cq Z f(f—fH'11“""'*]"""1”2{||D"I'-(UNI+|!D“Ulfﬂllum-...lm} da.
O<lal=in—=3N2+1+k 0

The right side of (3) changes analogously.

IL. The Case of Even Space Dimensions and Vanishing Mass

Let @eCl*2(RY, YeC" 32 *2(R"). Then the solution of the homo-
geneous wave-equation

-
F

—u—Au=0
[ v

o

L=

with initial-data ¢ and i is given by

{n—2)i2 ( Ay

P(x, )= z (v+1)b, 1" (;r‘, G,){x.r.]
v ) "

(n=2)/2 vl Fod
w Eﬂ b._:'((_a_!m Gl) {x.n+(-a; Gz) (. f))

(see [2], p.394). The b,'s are constants and we have

n+1
L R
Gy (x, )= = e(x+ré)dEdr,
I nr(‘;’) e ‘! w,(t* =)} n'[ ,
n+1
W) e
Ga(x, t)= ] 2y [ Uix+ré)dédr.
ﬂﬂ
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Since

| ”
Gylx, )= - | ol +1&y, ... x,+1E)dE,

n+1 ﬂ‘.-..[

1 _ & g N i@
Gzt."-"”:{ j 'p{xl+!Gl"""‘-n+r;n]d€t

n+1 Qs

we can easily carry out the differentiation with respect to r in the formula for
@(x, 1). We get as a standard term

5 N =t =
;"?ljm j'{D’m)!x+r§}lrcf}7d§rfr, 0=|7|=lal=(n=2)2+ 1
0 " = E nn

For =1 and 0 <g <t we obtain as in [6]. Chapter . A.,

! rn-—] )
| [ (D*@)x+ré)(ré)dédr

I—c (‘ﬂu(fz'_"r":!)!'r I

b
™

< sup | [ (DP@)(x+ré)(réVd
]/? r—:‘.jggrl g'[ L ] ’} ':I
2V e . - (4)
< }/_*07 { 3 e~ =0 1D ) (x+ )|y | dy
l/? 2slal slal+1 Kelh)
053l =|al=1=|1=1
+ ¥ f DR e)x+ )y dy).
o<l <1 K:10)
o5l =1 '
Furthermore, the trivial relation
I
’r—*,ﬁ-l [ (D* @) (x+r)r ’)fdr"—L _[ (D* ){Y+vh‘?—L I
o BE=P g e ey T A @y |
and the inequality
t—n =1 )
a ENle EX? A E
(.}[ o (=) ﬂ{m @Nx+re)rs) dé [5-1

1 .
S—— [ [(P*@)x+pI1y|dy
o, |/1:I Ki—cl)

hold. Summing up all these terms and proceeding as in Chapter | we get
Theorem 2. Ler a mapping
v: R* = C3*(R")

be given with supp v(t)= K ,,,(0). p(t) a positive continuous function. Let

i'.J{.]EC:]m[R+. Hm? + 14k (Rn)).
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Let 1(1=2—p)=2n/in—2) with | >p=0,1Z4>0, 1= i+ p. Then the following
estimates hold :

[(=4)"tsin(—4)' (1—0) l-'tcrldo"
]

HW M= A= W) Ry

I
E":B Z I(]‘-—ﬂ-}-l)"”'“""'”’: E'ﬁ)

05|s|sni2+k O
- {II D‘ U{ﬂ')” + ”DJ Ula)u[}ﬁll*n”mn,} da"'r

| cos(—A) (1—a) vig)da

0

le.lnll e S p]”RH-F

'
<co Z I[I_ﬂ.+ ”nll- Al=in—1)2 (7
Ocja|=n241+k 0

(1D (@) + 1 D7 0(a)]| s - o1y} d-
Remark 2. For the function @(x, ) we have proved the inequality
”‘p(”Hj,z.'n— A mlmngcm fﬂu_i]- (& {L_ﬂ'z ”‘P”LU" “BI{IRY)

L L HIPHJ,U“'"HR"I-*- E ||D,¢pl|l,t-'ll-#'fﬂﬂj
15lalSnf/2+1 (E]

< 1 Z "D#w”[‘illl-pi[nﬂi}c rg ll
1<lalsn2
where 1 >u20, 1Z2p+4i Ai>0. M 2£1/(1 —2—p)<2n/(n—2) in Theorem 2 we
have to replace the integral on the right side of (6) by

I
[ (1= + 1)t +e=A=0=D2 L) D> p(a)]| + || D* ()] st~ my ey} dT
0
The right side of (7) changes analogously.

[11. The Case of Nonvanishing Mass

This case is easily reduced to the case of vanishing mass by Hadamard’s
descent-method: The solution v of the wave-equation

v
ﬂ(‘.‘—r—f—.drﬁ+ml.==0.. m=0,

with sufficiently smooth initial-data (0. x)}=0. (@v/2)(0, xj=(x) fulfills the
relation

Y -
it
——A8=0 over R* xR"*',

-

fild
i) : .
where f=e~ V™ p 5(0, x)=0, ((Tr-) (0, x)=e¢~ VPxe i1y This guarantees an
O

at } higher decay-rate if we could show that the factor e=*V™*=** does not affect
the estimates of Chapters 1 and 1.
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Firstly, let n+ 1 be even. Let e C§ " *1(R"),
‘ﬁ :=v—iy’ﬂ_'|1nrl ",’"
We have to estimate a term

j "

m“+1(£2—l"

3 [ (D*f)(x+r&)ETdE. (9)
0, .

Proceeding as in Chapter 11 one easily gets the inequality

0| [ @]

Kel0)
ér_“ﬂ"'?h-l-'“ }' [DHL ..... i"'l'.b(Ig'l“}’p----X,,+,'-‘,tlj-"?""“;“'| (10)
I ypse
vl
.1 I i e'—l m‘.’(nb1+fnal‘[y”+ifr)7nvl d-‘?a‘!.ll d.vl g d}]u

YAsi=ri- E ¢l

where

i-——(&lt .'liiu+l)1 l‘:‘=l?1$““.?n+l}l Zélilélal_‘-l‘

0L |j|=|l=1, 11, t—e=rse, >0,

Since the second integral on the right side of (10) is bounded by a constant which
depends only on m we get the same estimates as in Chapter II. The terms with
0<|% =1, 0=|7|=1 can be treated analogously by supplementing the factor
&+ o4 &2, =1in (9). Furthermore, we have

- j ETdE
W”L[Dﬂdﬂuﬂgg?dt_
1
|

W, VEL AE—e

=&
(=10
0

}Jﬁl ..... fnl
P =".${I:+j?i,.“..\'”+}'n) fhil=Tn s

A

] (11)

i

Vet et
I e-—fv’ﬁ{x..u*rn-:’l Yt ﬂ'_’y‘l...dj-'ﬂ-

5 e+l 3 d_V,H.|
sherSri- I oyd f""‘“{ﬁ* b9 }‘f}
ve 1

As before the second integral on the right side of (11) is bounded by a constant
which depends only on m and & and we obtain the same estimates as in 1L

Secondly. let n+ 1 be odd. This case is much simplier than the foregoing
one. As in (10) we only have to integrale separately a product which contains
g~ 1VAxa 1 +re1) and then can proceed as in Chapter 1.

We conclude with two theorems:
Theorem 3. Let

{n+2. n odd.

n+1, n erven.
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Let 12i>0, 1>u20, 124+pu, J1l=2i=u)22. Let @peCy "2+ 3(R"),
YeClN "2 (R"). The solution of the homogeneous wave-equation
o

?—d¢+m¢'=ﬂ, m=>0,
a7

with initial-data ¢ and 1 fulfills the esrimate

i = 3Y= 2 s—NIZ e b
NP 3/00 - 2= w01 gy = €y =i {_l N {11l £20e0 - wrmny
o N"‘C‘ |‘2 g
+I ‘ ) ”'l’“j.' U'HI]R’P‘+ Z ||Dltp||u;“-'.jm“|
LS |a] S(N+1)/2
+ Z ” Dltxb‘lg,l (] N[R"}}- ;g ].

1<) SiN=1)2
Theorem 4. Ler N, 2, be as in Theorem 3. Let a mapping
v: R* = CY-"W2(R"
be given with supp v()= K ,,(0), p(t) a positive continuous function. Let
v(.)e Co (R*, H¥=VR+txko(Ry))  keN.

Then the following estimates hold (n odd e.g¢.)

(—4+m) *sin(—A+m)i(t—o)rio)do

Sty

LR H LR up{.kh'

X nil—A)—m/2 “2)
S0 ¥ (1= + 1)t —H—nz
D<|a]=(N=1)/24k O

AP (= A 4+m)~* via)| + | D* v(6)|] s - gy} A6 -

!
fcos(—=A+m) (t—a)v(a)do
0

HE: rn-a -_nl“ﬁn,

' i 13
éfu Z j(;_o—+1]ﬂll.—¢l-n4- { J
O<|afSIN=1)/24%1+k O

1 :D:t - 4-+m)” i via)l + | D* U[ﬂ']llyrn - u”‘ln,i dao.

The proofs follow directly from the preceding calculations. With regard to
(12) we remark that now we have not to avoid a difficulty at 1= g since (— 4 +m)*
has a bounded inverse.

IV. Further Estimates in the Case of Nonvanishing Mass

There is a gap between our estimates in Chapters 1. II and 111 since our
estimates in I1I involve derivatives of one order higher than the corresponding
ones in Chapters | and II but give a better decay-rate. It is the aim of this
chapter to show that the estimates of | and Il remain still valid in the case of
nonvanishing mass or are even betier.
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102
Let n be odd. Then the solution of

- ]

f
2 u—Au+mu=0,

m=>0,

L1

with initial-data
10, x)=0 (i) (0, x)=1r(x)e Cla- 12+ (RH)

has the representation
ult,x)=t || (tH)
=1y
with the differential operator
n—1)/2
[1 @)= X a
n—1y2 va )

The a_'s are constants and we have
n !

H(x, t)=— _[p""Ju[—|/;1|, 1 —p?) O(x,p)dp
(4]

] 4 B
Qx. )= ﬂj; Px+ré)de

(compare [2], p.408). J, is the Bessel-function of order 0. We list some well

kTIO\‘-‘i"l facts on Bessel-functions
==V S S ST
which we will need later on AeBEAGh
-i, (J;(x)/xH)= =T, (x)x?, xeR, (15)
o) =1, xelR, (16)
[ (x)= 7_?: xeR, 221 (17)

We have for Nav=1:

f o=t o o=/ m V=) Q05 ) o
il {"-UG{D}Q(r f}+IP" 12 == Jo(=V/my/P=p7) Q. ﬂ""“}

1

1

art
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On applying (15) we get
f i
fpm ! T:?J“ —1/;17 Vi2=p?) Qlx, p)dp
0 #
(VmVE=P) /ot p)dp

= — A=
ﬁ[p Ve—p?
1" - . iy E
=— | J,'{—:'Vm;/cﬁ,fn)w[x,-!-r;,.....x,,—l—r;,,)dq.
= fh+

Let us regard a term

- (i—1— HIW j‘ J(—f],/_]"imﬂ:“p“!'*"gl x,,l+lf,.}d'f
EUH;..H AT— 1~ m Y 1 | Ji z}/mL/ Eret)

O=psn 2y 41
o+ 2l =p. = 12l
'I|=' !T-r-i

AD* )Xyt s oees X ALENETEL. —m(]/'l/g:)n v dé).

Using the theorem of Gauss we obtain the relation
| o=t Ym /G ) D ) + Gy X+ 1 E)

ﬂll 1
LR »‘fv'H i ch(ﬁl," )J VEdE
1 é =3
= RO I a, {J{m('l-‘}m V¥ J(ID* ) (xy + 4. e )

el

S ARETE ?w+1 S i/—_l].a‘ 2 )1“' d}t dvn+1

Let us regard the lerms

1 e ¢ — —
e, e VYae) YneslV/ MY vas "1} s
_{'1',3:53'*” ‘Fn+1
(=gl
;T;-H j J"ﬂl( lel'fvnvi) * Un-&i” m}r "'n-'—l m”)‘f.lrnﬂ&l‘

-{t:‘.gpra}i
LR |
I!:-—vgljf-}

1 - =
e ] 1 P (=Y my Vas )Y/ MY yaad)™* ' d¥srs
_.{,z__vg_lﬁ
N e AL
[inet j lel l/mv{"rwi) 1”“('/.'11 t'/.]'n+i} Vot

-t
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(18)

(19)

(20)

(21)

(22)
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It is not difficult to see that

<C(p.k), a>0, keNu{0}

% ju.fl“”(x] x* dx
0

with a positive constant C(p, k) independent of .
Using the Hausdorff-Young inequality we finally obtain (v=Z7v=1,1=4>0,
1>p20,1274+p)
In+v—~i‘- ‘nri—l e ot

- - — 'k
=05 Fi=di=in=iid H'f’"uln-u.':.r.*u-m[m,. t=1.

On applying the methods developed in Chapter | one sees that

Il.r+1
rﬂ-!—v——i-

can be estimated in the same way. It remains the term

-:"ril [P (= Y/m /P =p?) Q(x. p)dp
0

which now turns out to be the trivial one. Since

l (';i—l I

, o
[0 2 dol=V/my/T=1?) Q(x. p) dp

¢

LG =2 = a) (R

Av-1

=1 1, (0) Q(x. 1)

< [ Wx+p)ldy (23)
rﬂ K A0)

% (sin(=4+m)* t(=4+m)* y)=cos(—d+m)* t

we have proved the following theorem:
Theorem 5. Let n be odd. Let
pE Ct+lﬂ— 1/2+3 (IRJIL
lbeclé-i-(nu!lfl-‘-l{mn]' kENU{G].
Let 124>0,1>u=0, | Z i+ . Then the following inequalities hold :

Isin(—=a+m)* t(=44+m)" | gr s - 2- 3 (R

Ir:ll]:- Ayi=tn=1)/2

=c "'.b"uhtn-Lm.un-uamnp

[[cos(— 4 +mP HP”Hu.:.-'u - & = wl{Rn)

é‘:]ﬁ rﬂu—l]—lﬂ- ”rz”‘P“Ha- Lo (=100, 0/00 ~ ) | Ry » !g l.

There are of course corresponding estimates for the terms

i
[sin(—A+m)(t—a)(=A+m)"*f(o)da,
(1]

[cos(—A+m)'(t—a) f(a) da,
0

if f(r. x) is a sufficiently regular function with compact support in x (compare
Chapter I11).
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Now we have to treat the case of even space-dimensions. The solution of

Fu
——Au+mu=0
ar?

with initial-data u(0, x)=0, (Qu/21)(0, x)=ty(x) has the representation

u(t. x)=tF,_5,,(1G)

with the differential operator
(n—2)i2 ay

Po-zyato)= ¥ byt
v=0

ap v(t, X).

Here the b_'s are constants and moreover, we have
2!'( ";] ) = )
G x)= j _J

1]

g1 V{T_E r (’_;)

| e e
O(x. p)=— [ W, +p & X+ p &) dE.
(l," ﬂn

cosh (i y‘; V2 =p*)Q(x, p)dp.

Let us look into the question whether this case could be treated as the foregoing
one. We have
2 [ s S
-1 6[ l/f—z——.(?z cosh (iy/my/t*—p*) Qlx, p)dp
= | cosh (iy/me V&, Jblx, +1 &y, ... X, +1E) dE.

1y 41

Now we can carry out the differentiation with respect to t. Remembering that

coshiymey s =cosymiy &,

we can apply the theorem of Gauss and then proceed as in the foregoing case.
This yields

Theorem 6. Let n be even. Let t = 1,
e Cln- 2 +k+3(R")
e Q=2 Hke2(Rm)
Let 15220, 1> u=0, 1 = i+ p. Then the following inequalities hold :
Isin(—A4+m)* t(=4+m)™ ¥ Yl gr.rii- 2-maen
S 0,5 OV | gt s ov- D1 - iRy
llcos(—d-+m)* t @l g, -4y

1=d)—ni2
gclgrﬂ AL Hfﬂuﬂk*:*l-vv:m.l-u—ui[m]-
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As before, we have corresponding estimates for the terms

I
[sin(—aA+m)*(t—a)(—A+m) *f(a) da.
0

| cos(=A+m)(t—a) flo)da.
0

In a letter dated from Nov. 5™ 1970 Prof. W.A. Strauss communicated to
the author that he has proved estimates similar to ours. His proofs too are
based on methods developed in [6]. Among these estimates is the following
interesting one, as he states:

[
Isin(—A+m)* r(—A+m)~?* gpumk,,g—fﬂ IP@llpms, @ECF(R?), t21,

with only derivatives of ¢ appearing on the right side.
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