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Synopsis

We characterize lines of reversibility for the centre-problem by using their slope as parameter. As a result
of our method we formulate in a rather concise way the conditions for reversibility for cubic systems with
nonvanishing quadratic terms.

1 Introduction
Consider a system of differential equations of the form

T o= y+q(z,y)
(1.1)

g = —z—pla,y)
where p, ¢ are polynomials whose terms of lowest order are of degree at least two. A well-known sufficient
condition, due to Poincaré, for the origin to be a centre is that the system be reversible with respect to
a line L, which passes through the origin, i.e. that the system be invariant under a reflection in the line
L, and under a simultaneous reversal of the independent variable ¢. Thus system (1.1) is reversible with
respect to the line x = 0 if and only if it is invariant under the transformation (z,y,t) — (—z,y, —t), i.e. if
and only if ¢(—z,y) = ¢(x,y) and p(—z,y) = —p(z, y). Thus ¢ contains only even powers of z and p only
odd ones. Reversibility with respect to y = 0 is thus equivalent to ¢(z, —y) = —q(x,y), p(z, —y) = p(z,y),
i.e. ¢ contains only odd powers of y and p only even ones. As for a general line L one can apply a rotation
which transforms L into the line £ = 0 or y = 0 and a criterion for reversibility may then readily be
attained [1]. Collins, by using tensor-calculus, derives in [2] a necessary and sufficient condition for the
existence of such a line without involving its unknown equation.

Here we discuss another method which neither uses purely orthogonal transformations nor tensor calcu-
lus. By a suitable change of variables we reduce the problem of finding a line of reversibility y = f%x
with m € R — {0} to the question whether the system is reversible to y = 0. This access therefore leaves
out the coordinate-axes as possible lines of reversibility. As mentioned above it is however easy to decide

if one of the coordinate axes is a line of reversibility. If we write

p = p2t+p3s+...+DpN
(1.2)
q = Q@+g+...+aqn

with homogeneous polynomials p1, g; of degree 4 it turns out that possible lines of reversibility are already
determined by the quadratic case & = y+qa, § = —2 —po provided (p2, g2) # (0, 0). The values of m found
there have to be inserted into polynomial equations corresponding to ps, g, ..., PN, gn. These equations
then provide the necessary and sufficient conditions for (1.1) to have a line of reversibility. The coefficients
of the polynomial equations linearly depend on the coefficients of ps,qs, ..., pn, gn respectively. We use
this method to discuss the case

p = p2+Dp3
for (p2,q2) # (0,0) (1.3)
q = q2+qs

and to bring the conditions for the existence of a line of reversibility into a manageable form.



2 Reversibility in Polynomial Systems
In what follows we frequently use instead of (1.1) the single equation

;T +p(x,y)
Y Ty ey 21)

as done in [3] or [4]. For m # 0 we employ the linear transformation of variables.

£ = y—ma,
(2.2)
no= Y+
or
r = =8 =e(En),
2 (2.3)
Yy = it el = ().

We set ®(&,1) = (0(&,),%(&,1))T with .7 for transposition. ®~! consists of a rotation and a stretching
of the x,y-coordinates. So does ® but in opposite order. Thus reversibility with respect to a line is a
property which is invariant under ®~! and ®. Then (2.1) becomes

r___E+(g=mpo?®
m2n + m(mgq +p)o ®’

(2.4)
Now we arrive at

Theorem 2.1: (2.1) has a centre at (0,0) with line of reversibility y = —~=x(m # 0) if and only if
each

(g; — mp;) o @ contains only even powers of n and each

(2.5)
(mg; + p;) o ® contains only odd powers ofn, 2 <1i < N.
Proof:
If (2.4) satisfies (2.5), then (2.4) has a centre at (0,0) with line of reversibility 7 = 0. Thus (2.1) has a
centre at (0,0) with line of reversibility y = —-L . If conversely (2.1) has a centre at (0,0) with line of re-

versibility y = f%z, then (2.4) has so with line of reversibility 7 = 0. Consequently (2.5) is satisfied. O
(2.5) can be transformed into a more explicit form.

Theorem 2.2: (2.5) is equivalent to N — 1 matriz equations

m2 b1(pi, qi)
m b2(pi, qi)
Liv1(pi, ¢:) : = ) ,2<i <N, (2.6)
i+ biv1(pis @)

m

where Liy1(pi, @)y (01(Pis @)y -y b1 (0, @))T are (i4+1) x (i+1), (i+1) x 1 matrices respectively whose
coefficients linearly depend on the coefficients of p;, q;.

Proof:
We have to evaluate (¢; — mp;) o @, (mg; + p;) o ®. These expressions are of the form

k l
ﬁ Z (Giks — Mpik1) Z (f) mknk_j(—g)j . Z ((l]) mQ(Z—Q)nl—q§q _

k1 k=i j=0 a=0

m' i i— A l - j k !
S S s 3 wengpe (V) (|
A=0 kL k+1=i g a5 +a=X
j<min(k,\)
g<min(l,)

if we set A = j+q and if p;;, ¢;1 denote the coefficients of p;, g; respectively. If i — A is odd, the coefficient
of 7"~ has to vanish. If 4 is odd the values



A=i—1,i-3,...,0

furnish the powers in question. For A = 0 the largest occurring power of m is 2i + 1, the smallest one 1.
For A\ = 2 we obtain 2i — 1 as largest one and i — 2 as smallest one and so on. Dividing by m?, m*~2, ...
and multiplying by (m? + 1)* we end up with (i + 1)/2 polynomials in m of degree i + 1 which have to
vanish. If ¢ is even the values

A=i—1,i—3,...,1

furnish the powers in question. For A\ = 1 the largest occurring power of m is 2i, the smallest one is
1 — 1. Observe that these values are assumed for [ =7 —1, ¢ =0and [ =1, ¢ = 1. For A\ = 3 we obtain
2i — 2 as largest one and i — 3 as smallest one and so on. Dividing by m*~!, m*~3, ... and multiplying by
(m?+1)* we arrive at i/2 polynomials in m of degree i + 1 which have to vanish. As for (mgq; +p;) o ® the
coefficients of even powers of 77 have to vanish. The calculations are very similar to the preceding ones. If
i is odd we again obtain (i 4+ 1)/2 polynomials in m of degree i + 1 which have to vanish; if 7 is even we

arrive at i/2 + 1 polynomials in m which have to vanish. O

The systems (2.6) have to be considered as necessary and sufficient conditions on the coefficients of
pi,q; for the existence of a line of reversibility different from the coordinate-axes. This can be seen as
follows. If (p;,q;) is the first pair where p;, ¢; do not vanish identically we can find the possible values of
m from (2.6) for ¢ = j in terms of the coefficients of p;, ¢;. These then have to be inserted into (2.6) for
t=17,...,NN. For instance let us assume that in

Liv1(pj ;) = (lik)ik=1,..j+1

the matrix

(lik)ik=2,...j+1 has rank j

then we can possibly obtain the value of m from the first row of (2.6, ¢ = j). At least this is so if
L;i+1(pj, ;) has rank j+ 1. This value of m if # 0 then has to be inserted into the remaining equations in
(2.6). It is an expression in the coefficients of p;, ¢;. Thus we obtain the necessary and sufficient conditions
for the existence of a line of reversibility different from the coordinate-axes. In the example to follow in
the next section we will see that in more detail.

3 Cubic Systems with Nonvanishing Quadratic Parts

Let us consider

r_ _.’L‘+p2 + D3

Yy+q2+qs3
with
pe = @z + (2b+ a)zy + &y,
@ = b2+ (204 B)ay + dy?,
p3 = ax®+ba’y + cry? + dy?,
g3 = Ax®+ Ba’y+ Cay® + Dyd.

Here we adopted the usual notation for the quadratic parts pa,gs (cf. [3, 4, 5]). The conditions (2.6,
i =2,3) read as follows.

m?(2b + @) + m?(— (42 + B) + 2a) + m(—(4b + o) + 2d) = —(2¢ + ), (3.1)
m®b 4+ m?*(— (26 + B) +a) + m(—(2b + o) + d) = —, (3.2)
mPd+m?((2e+ 8) + ) + m((2b+ @) + B) = —a, (3.3)
—m*d+m3(D —¢) + m*(C —b) + m(B —a) = —A (3.4)



—m*b +m*(B — (3a — 2¢)) + m?*(3A — 2C — (3d — 2b)) + m(3D — 2B — ¢) = —C, (3.5)
—m*C +m?*(3D — 2B — ¢) + m*(2C — 3A — (2b — 3d)) + m(B — (3a — 2¢)) = —b, (3.6)
—m*A+m*(B —a) +m?*(—C +b) +m(D —¢) = —d. (3.7)

(3.1, 3.2, 3.3) stem from ¢ = 2, (3.4, 3.5, 3.6, 3.7) from ¢ = 3. We start with ¢ = 2. Then (3.1, 3.2, 3.3)
are equivalent to

mia +m?B+ma+ =0 (3.8)
m*(b+d) +m>(@+2e) +mb+d +a+c=0 (3.9)
m?d+m2((26+ B8) + ) +m((2b+a)+B) +a=0 (3.10)

For further treatment we introduce the vector

a=(a+cb+da,p) R
If a has only nonvanishing components (3.8, 3.9) admit within R — {0} only the solutions —g, —%T?
respectively. Thus we obtain as necessary and sufficient conditions for the solvability of (3.1, 3.2, 3.3) the
relations

o~ ~

Bb+d) =a(a+7c), (3.11)
—3%d+ af?(3¢+ B) — a?B(3b + a) + a’a = 0. (3.12)

(3.11, 3.12) coincide with condition II in [5, p. 13].

Inserting m = —g into (3.4, ..., 3.7) we obtain together with (3.11, 3.12) the necessary and sufficient
conditions for the existence of a line of reversibility, different from the coordinate-axes.

We briefly discuss the other possibilities for a. If a # 0 there are only two cases where we may have
a line of reversibility different from the coordinate-axes, namely

A+0#0, b+d#0, a=0, B=0,
a+c=0, b+d=0, a#0, B#0;

then m = —%IS in the first case and then necessary and sufficient conditions for the existence of a line

of reversibility as above are

~ ~ ~ ~ ~ ~

—(@+22d+30b+d)(@+0%—30b+d)?2@+b+ (b+d3*a=0,

; — _a+c

(34,...,3.7) with m = ta

In the second case we have m = —g and an analogous result. It remains to deal with a = 0. In this case
we are left with

m3d + 3m2¢ — 3md — ¢ = 0.

If c?;é 0 we obtain three distinct real solutions my,ms, mg since the discriminant is < 0. If € # 0 these
solutions do not vanish and y = _%x is a line of reversibility if and only if (3.4, ..., 3.7) are satisfied
with m = m;. Since mq,mo, mg can be computed by means of Cardano’s formula we arrive thus at the
necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate
axes. If d # 0, € = 0 one of m,; vanishes, say ms. For m; = /3, ma = —+/3 the conclusion before

holds. The case d = 0, ¢ # 0 furnishes two roots, namely m; = %, mo = —% and we can proceed

as before. The case d =¢ =0 implies (p2, g2) = (0,0) since a = 0. It therefore contradicts our assumption.
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