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Synopsis

We characterize lines of reversibility for the centre-problem by using their slope as parameter. As a result
of our method we formulate in a rather concise way the conditions for reversibility for cubic systems with
nonvanishing quadratic terms.

1 Introduction

Consider a system of differential equations of the form

ẋ = y + q(x, y)

ẏ = −x− p(x, y)



 (1.1)

where p, q are polynomials whose terms of lowest order are of degree at least two. A well-known sufficient
condition, due to Poincaré, for the origin to be a centre is that the system be reversible with respect to
a line L, which passes through the origin, i.e. that the system be invariant under a reflection in the line
L, and under a simultaneous reversal of the independent variable t. Thus system (1.1) is reversible with
respect to the line x = 0 if and only if it is invariant under the transformation (x, y, t) → (−x, y,−t), i.e. if
and only if q(−x, y) = q(x, y) and p(−x, y) = −p(x, y). Thus q contains only even powers of x and p only
odd ones. Reversibility with respect to y = 0 is thus equivalent to q(x,−y) = −q(x, y), p(x,−y) = p(x, y),
i.e. q contains only odd powers of y and p only even ones. As for a general line L one can apply a rotation
which transforms L into the line x = 0 or y = 0 and a criterion for reversibility may then readily be
attained [1]. Collins, by using tensor-calculus, derives in [2] a necessary and sufficient condition for the
existence of such a line without involving its unknown equation.

Here we discuss another method which neither uses purely orthogonal transformations nor tensor calcu-
lus. By a suitable change of variables we reduce the problem of finding a line of reversibility y = − 1

mx
with m ∈ R− {0} to the question whether the system is reversible to y = 0. This access therefore leaves
out the coordinate-axes as possible lines of reversibility. As mentioned above it is however easy to decide
if one of the coordinate axes is a line of reversibility. If we write

p = p2 + p3 + . . . + pN

q = q2 + q3 + . . . + qN



 (1.2)

with homogeneous polynomials p1, qi of degree i it turns out that possible lines of reversibility are already
determined by the quadratic case ẋ = y+q2, ẏ = −x−p2 provided (p2, q2) 6= (0, 0). The values of m found
there have to be inserted into polynomial equations corresponding to p2, q2, . . . , pN , qN . These equations
then provide the necessary and sufficient conditions for (1.1) to have a line of reversibility. The coefficients
of the polynomial equations linearly depend on the coefficients of p3, q3, . . . , pN , qN respectively. We use
this method to discuss the case

p = p2 + p3

q = q2 + q3

for (p2, q2) 6= (0, 0)



 (1.3)

and to bring the conditions for the existence of a line of reversibility into a manageable form.
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2 Reversibility in Polynomial Systems

In what follows we frequently use instead of (1.1) the single equation

y′ = −x + p(x, y)
y + q(x, y)

(2.1)

as done in [3] or [4]. For m 6= 0 we employ the linear transformation of variables.

ξ = y −mx,

η = y + 1
mx

(2.2)

or

x = m
m2+1 (η − ξ) = ϕ(ξ, η),

y = m2

m2+1η + 1
m2+1ξ = ψ(ξ, η).

(2.3)

We set Φ(ξ, η) = (ϕ(ξ, η), ψ(ξ, η))T with .T for transposition. Φ−1 consists of a rotation and a stretching
of the x, y-coordinates. So does Φ but in opposite order. Thus reversibility with respect to a line is a
property which is invariant under Φ−1 and Φ. Then (2.1) becomes

η′ = − ξ + (q −mp) ◦ Φ
m2η + m(mq + p) ◦ Φ

. (2.4)

Now we arrive at

Theorem 2.1: (2.1) has a centre at (0, 0) with line of reversibility y = − 1
mx(m 6= 0) if and only if

each

(qi −mpi) ◦ Φ contains only even powers of η and each

(mqi + pi) ◦ Φ contains only odd powers of η, 2 ≤ i ≤ N.



 (2.5)

Proof:
If (2.4) satisfies (2.5), then (2.4) has a centre at (0, 0) with line of reversibility η = 0. Thus (2.1) has a
centre at (0, 0) with line of reversibility y = − 1

mx. If conversely (2.1) has a centre at (0, 0) with line of re-
versibility y = − 1

mx, then (2.4) has so with line of reversibility η = 0. Consequently (2.5) is satisfied. ¤

(2.5) can be transformed into a more explicit form.

Theorem 2.2: (2.5) is equivalent to N − 1 matrix equations

Li+1(pi, qi)




m
m2

...
mi+1


 =




b1(pi, qi)
b2(pi, qi)

...
bi+1(pi, qi)


 , 2 ≤ i ≤ N, (2.6)

where Li+1(pi, qi), (b1(pi, qi), . . . , bm+1(pi, qi))T are (i+1)×(i+1), (i+1)×1 matrices respectively whose
coefficients linearly depend on the coefficients of pi, qi.

Proof:
We have to evaluate (qi −mpi) ◦ Φ, (mqi + pi) ◦ Φ. These expressions are of the form

1
(m2 + 1)i

∑

k,l,k+l=i

(qikl −mpikl)
k∑

j=0

(
k

j

)
mkηk−j(−ξ)j ·

l∑
q=0

(
l

q

)
m2(l−q)ηl−qξq =

=
mi

(m2 + 1)i

i∑

λ=0

ηi−λ
∑

k,l,k+l=i

(qikl −mpikl)ml ·
∑

j,q,j+q=λ
j≤min(k,λ)
q≤min(l,λ)

m−2q(−ξ)jξq

(
k

j

)(
l

q

)

if we set λ = j+q and if pikl, qikl denote the coefficients of pi, qi respectively. If i−λ is odd, the coefficient
of ηi−λ has to vanish. If i is odd the values
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λ = i− 1, i− 3, . . . , 0

furnish the powers in question. For λ = 0 the largest occurring power of m is 2i + 1, the smallest one i.
For λ = 2 we obtain 2i− 1 as largest one and i− 2 as smallest one and so on. Dividing by mi,mi−2, . . .
and multiplying by (m2 + 1)i we end up with (i + 1)/2 polynomials in m of degree i + 1 which have to
vanish. If i is even the values

λ = i− 1, i− 3, . . . , 1

furnish the powers in question. For λ = 1 the largest occurring power of m is 2i, the smallest one is
i − 1. Observe that these values are assumed for l = i − 1, q = 0 and l = 1, q = 1. For λ = 3 we obtain
2i− 2 as largest one and i− 3 as smallest one and so on. Dividing by mi−1, mi−3, . . . and multiplying by
(m2 +1)i we arrive at i/2 polynomials in m of degree i+1 which have to vanish. As for (mqi +pi)◦Φ the
coefficients of even powers of η have to vanish. The calculations are very similar to the preceding ones. If
i is odd we again obtain (i + 1)/2 polynomials in m of degree i + 1 which have to vanish; if i is even we
arrive at i/2 + 1 polynomials in m which have to vanish. ¤

The systems (2.6) have to be considered as necessary and sufficient conditions on the coefficients of
pi, qi for the existence of a line of reversibility different from the coordinate-axes. This can be seen as
follows. If (pj , qj) is the first pair where pj , qj do not vanish identically we can find the possible values of
m from (2.6) for i = j in terms of the coefficients of pj , qj . These then have to be inserted into (2.6) for
i = j, . . . , N . For instance let us assume that in

Lj+1(pj , qj) = (lik)i,k=1,...,j+1

the matrix

(lik)i,k=2,...,j+1 has rank j

then we can possibly obtain the value of m from the first row of (2.6, i = j). At least this is so if
Lj+1(pj , qj) has rank j +1. This value of m if 6= 0 then has to be inserted into the remaining equations in
(2.6). It is an expression in the coefficients of pj , qj . Thus we obtain the necessary and sufficient conditions
for the existence of a line of reversibility different from the coordinate-axes. In the example to follow in
the next section we will see that in more detail.

3 Cubic Systems with Nonvanishing Quadratic Parts

Let us consider

y′ = −x + p2 + p3

y + q2 + q3

with

p2 = âx2 + (2b̂ + α)xy + ĉy2,

q2 = b̂x2 + (2ĉ + β)xy + d̂y2,

p3 = ax3 + bx2y + cxy2 + dy3,

q3 = Ax3 + Bx2y + Cxy2 + Dy3.

Here we adopted the usual notation for the quadratic parts p2, q2 (cf. [3, 4, 5]). The conditions (2.6,
i = 2, 3) read as follows.

m3(2b̂ + α) + m2(−(4ĉ + β) + 2â) + m(−(4b̂ + α) + 2d̂) = −(2ĉ + β), (3.1)

m3b̂ + m2(−(2ĉ + β) + â) + m(−(2b̂ + α) + d̂) = −ĉ, (3.2)

m3d̂ + m2((2ĉ + β) + ĉ) + m((2b̂ + α) + β̂) = −â, (3.3)

−m4d + m3(D − c) + m2(C − b) + m(B − a) = −A (3.4)
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−m4b + m3(B − (3a− 2c)) + m2(3A− 2C − (3d− 2b)) + m(3D − 2B − c) = −C, (3.5)

−m4C + m3(3D − 2B − c) + m2(2C − 3A− (2b− 3d)) + m(B − (3a− 2c)) = −b, (3.6)

−m4A + m3(B − a) + m2(−C + b) + m(D − c) = −d. (3.7)

(3.1, 3.2, 3.3) stem from i = 2, (3.4, 3.5, 3.6, 3.7) from i = 3. We start with i = 2. Then (3.1, 3.2, 3.3)
are equivalent to

m3α + m2β + mα + β = 0 (3.8)

m3(̂b + d̂) + m2(â + ĉ) + m(̂b + d̂) + â + ĉ = 0 (3.9)

m3d̂ + m2((2ĉ + β) + ĉ) + m((2b̂ + α) + β̂) + â = 0 (3.10)

For further treatment we introduce the vector

a = (â + ĉ, b̂ + d̂, α, β) ∈ R4

If a has only nonvanishing components (3.8, 3.9) admit within R − {0} only the solutions −β
α , − â+ĉ

b̂+d̂

respectively. Thus we obtain as necessary and sufficient conditions for the solvability of (3.1, 3.2, 3.3) the
relations

β(̂b + d̂) = α(â + ĉ), (3.11)

−β3d̂ + αβ2(3ĉ + β)− α2β(3b̂ + α) + α3â = 0. (3.12)

(3.11, 3.12) coincide with condition II in [5, p. 13].

Inserting m = −β
α into (3.4, . . ., 3.7) we obtain together with (3.11, 3.12) the necessary and sufficient

conditions for the existence of a line of reversibility, different from the coordinate-axes.

We briefly discuss the other possibilities for a. If a 6= 0 there are only two cases where we may have
a line of reversibility different from the coordinate-axes, namely

â + ĉ 6= 0, b̂ + d̂ 6= 0, α = 0, β = 0,

â + ĉ = 0, b̂ + d̂ = 0, α 6= 0, β 6= 0;

then m = − â+ĉ

b̂+d̂
in the first case and then necessary and sufficient conditions for the existence of a line

of reversibility as above are

−(â + ĉ)3d̂ + 3(̂b + d̂)(â + ĉ)2ĉ− 3(̂b + d̂)2(â + ĉ)̂b + (̂b + d̂)3â = 0,

(3.4, . . . , 3.7) with m = − â+ĉ

b̂+d̂
.

In the second case we have m = −β
α and an analogous result. It remains to deal with a = 0. In this case

we are left with

m3d̂ + 3m2ĉ− 3md̂− ĉ = 0.

If d̂ 6= 0 we obtain three distinct real solutions m1,m2,m3 since the discriminant is < 0. If ĉ 6= 0 these
solutions do not vanish and y = − 1

mi
x is a line of reversibility if and only if (3.4, . . . , 3.7) are satisfied

with m = mi. Since m1,m2,m3 can be computed by means of Cardano’s formula we arrive thus at the
necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate
axes. If d̂ 6= 0, ĉ = 0 one of mi vanishes, say m3. For m1 =

√
3, m2 = −√3 the conclusion before

holds. The case d̂ = 0, ĉ 6= 0 furnishes two roots, namely m1 = 1√
3
, m2 = − 1√

3
and we can proceed

as before. The case d̂ = ĉ = 0 implies (p2, q2) = (0, 0) since a = 0. It therefore contradicts our assumption.
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