Generation of Centres by Adding Higher Order
 Terms in $y^{\prime}=-\frac{x^{2 n-1}+P(x, y)}{y^{2 n-1}+Q(x, y)}$

Wolf von Wahl
Universität Bayreuth
Department of Mathematics
D-95440 Bayreuth, Germany

March 1, 2007

Synopsis:

We systematically study the question how to convert a focus into a centre. This question was first raised by Frommer [1].

1 Introduction

Let $n \in \mathbb{N} . P(x, y), Q(x, y)$ are polynomials in x, y starting with terms of order $2 n$ at least. If

$$
\begin{equation*}
y^{\prime}=-\frac{x^{2 n-1}+P(x, y)}{y^{2 n-1}+Q(x, y)}=-\frac{\mathcal{A}(x, y)}{\mathcal{B}(x, y)} \tag{1.1}
\end{equation*}
$$

has a focus at the critical point $(0,0)$ it is sometimes possible to convert $(0,0)$ into a centre by adding higher order polynomials in the numerator and denominator. Frommer [1] was the first to study the influence of higher order terms on the question whether (1.1) can be made a centre or not. Our work ist motivated by his contributions.

2 Systematic Approach

As announced we intend to convert a focus $y^{\prime}=-\frac{\mathcal{A}(x, y)}{\mathcal{B}(x, y)}$ into a centre by replacing the preceding equation by $y^{\prime}=-\frac{\mathcal{A}(x, y)+\mathcal{Z}_{1}(x, y)}{\mathcal{B}(x, y)+\mathcal{Z}_{2}(x, y)}$. The additional terms $\mathcal{Z}_{1}(x, y), \mathcal{Z}_{2}(x, y)$ vanish faster than $\mathcal{A}(x, y), \mathcal{B}(x, y)$ at $(0,0)$.

We are needing a Eulerian multiplier. Since such a multiplier does not vanish it is close by to try it with an expression $\mu=c e^{\widetilde{p}}$ (constant $\neq 0, \widetilde{p}$ an appropriate function). We start with $n \in \mathbb{N}$,

$$
\begin{align*}
\mathcal{A}(x, y) & =x^{2 n-1}+P(x, y) \tag{2.1}\\
\mathcal{B}(x, y) & =y^{2 n-1}+Q(x, y) \tag{2.2}
\end{align*}
$$

P, Q homogeneous polynomials of one and the same degree $p \geq n$. With still unknown polynomials $\widetilde{q}, \widetilde{p}$ we try the ansatz

$$
\begin{align*}
\frac{x^{2 n-1}+P+\frac{1}{2 n} \widetilde{q} \widetilde{p}_{x}}{y^{2 n-1}+Q+\frac{1}{2 n} \widetilde{q} \widetilde{p}_{y}} & =\frac{2 n\left(x^{2 n-1}+P+\frac{1}{2 n} \widetilde{q} \widetilde{p}_{x}\right)}{2 n\left(y^{2 n-1}+Q+\frac{1}{2 n} \widetilde{q} \widetilde{p}_{y}\right)} \\
& =\frac{\left(2 n x^{2 n-1}+\widetilde{q}_{x}\right)+\left(x^{2 n}+y^{2 n}+\widetilde{q}\right) \widetilde{p}_{x}}{\left(2 n y^{2 n-1}+\widetilde{q}_{y}\right)+\left(x^{2 n}+y^{2 n}+\widetilde{q}\right) \widetilde{p}_{y}} \\
& =\frac{\partial_{x}\left[\left(x^{2 n}+y^{2 n}+\widetilde{q}\right) e^{\widetilde{p}}\right]}{\partial_{y}\left[\left(x^{2 n}+y^{2 n}+\widetilde{q}\right) e^{\widetilde{p}}\right]} \\
& =\frac{\partial_{x} F}{\partial_{y} F} \text { with } F=\left(x^{2 n}+y^{2 n}+\widetilde{q}\right) e^{\widetilde{p}}, \mu=2 n e^{\widetilde{p}} . \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{grad} \widetilde{q} \geq 2 n+1 \tag{2.4}
\end{equation*}
$$

the level lines of F are closed and the origin is a centre for $y^{\prime}=-\frac{\mathcal{A}+\frac{1}{\mathcal{B}}+\frac{1}{2 n} \widetilde{q} \widetilde{p}_{x}}{\widetilde{q} p_{y}}$ provided

$$
\begin{align*}
& 2 n P=\widetilde{q}_{x}+\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{x} \tag{2.5}\\
& 2 n Q=\widetilde{q}_{y}+\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{y} \tag{2.6}
\end{align*}
$$

The additional term in the denominator is $\frac{1}{2 n} \widetilde{q} \widetilde{p}_{y}$ and in the numerator it is $\frac{1}{2 n} \widetilde{q} \widetilde{p}_{x}$. Let us compare the degrees. We have

$$
\begin{equation*}
\operatorname{deg} P=\operatorname{deg} Q=p \geq 2 n \tag{2.7}
\end{equation*}
$$

Consequently

$$
\begin{align*}
\operatorname{deg} \widetilde{q} & =p+1 \tag{2.8}\\
2 n-1+\operatorname{deg} \widetilde{p} & =p, \operatorname{deg} \widetilde{p}=p-(2 n-1) . \tag{2.9}
\end{align*}
$$

For the given $2(p+1)$ coefficients of P, Q we have at our disposal $2 p+2+2-2 n=2 p+4-2 n$ coefficients of \widetilde{q} and \widetilde{p}. If the coefficient vectors of $P, Q, \widetilde{q}, \widetilde{p}$ are $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}$ respectively we arrive at a linear system

$$
\begin{equation*}
\binom{\mathfrak{a}}{\mathfrak{b}}=\mathcal{C}\binom{\mathfrak{c}}{\mathfrak{d}} . \tag{2.10}
\end{equation*}
$$

Here $\mathfrak{a}, \mathfrak{b}$ have $p+1$ rows each. $(\mathfrak{a} \mathfrak{b})^{T}$ is a column, \mathcal{C} has $2(p+1)$ rows and $2(p+1)+2-2 n$ columns, $\mathfrak{c}, \mathfrak{d}$ have $p+2, p-(2 n-1)+1=p-2 n+2$ rows respectively and $(\mathfrak{c d})^{T}$ is a column. For $n=1$ the matrix \mathcal{C} is quadratic. At most in the case (2.10) has a solution $(\mathfrak{c d})^{T}$ for any right hand side $(\mathfrak{a} \mathfrak{b})^{T}$. For $n \geq 2$ the system (2.10) is overdetermined. \mathcal{C} has only nonnegative integer entries.

We achieve a considerable simplification if we exploit the structure of $(2.5,6)$.

Theorem 2.1 Let $n \in \mathbb{N}$ and P, Q homogeneous polynomials in x, y of degree $p \geq 2 n$. Let \widetilde{p} a homogeneous polynomial of degree $p-(2 n-1)$. Let

$$
\begin{equation*}
y^{2 n-1} \widetilde{p}_{x}-x^{2 n-1} \widetilde{p}_{y}=P_{y}-Q_{x} \tag{2.11}
\end{equation*}
$$

Then there is a homogeneous polynomial \widetilde{q} of degree $p+1$ such that (2.5,6) are valid. This means

$$
\left.\begin{array}{l}
2 n P=\widetilde{q} x+\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{x} \tag{2.12}\\
2 n Q=\widetilde{q}_{y}+\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{y}
\end{array}\right\}
$$

Proof: (2.11) implies that $\left(2 n P-\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{x}, 2 n Q-\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{y}\right)$ is a gradient. Set for instance

$$
\begin{aligned}
& \partial_{x} f=\sum_{\nu+\mu=p} \widehat{p}_{\mu \nu} x^{\mu} y^{\nu}=2 n P-\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{x} \\
& \partial_{y} f=\sum_{\nu+\mu=p} \widehat{q}_{\mu \nu} x^{\mu} y^{\nu}=2 n Q-\left(x^{2 n}+y^{2 n}\right) \widetilde{p}_{y}
\end{aligned}
$$

Since we have on the right hand side the Taylor expansions for $\partial_{x} f, \partial_{y} f$ around the origin we obtain that f is a polynomial with degree $p+1$. Employing principal functions in x, y respectively we get

$$
\begin{aligned}
f & =\sum_{\substack{\mu+\nu=p+1, \mu \geq 1, \nu \geq 1}}^{I} \widehat{p}_{\mu-1 \nu} \frac{1}{\mu} x^{\mu} y^{\nu}+\sum_{\substack{\mu=\lambda+1, \mu \geq 1}}^{I I} \widehat{p}_{\mu-10} \frac{1}{\mu} x^{\mu}+\varphi(y), \\
& =\sum_{\substack{\mu+\nu=p+1 \\
\mu \geq 1, \nu \geq 1}}^{I I I} \widehat{q}_{\mu \nu-1} \frac{1}{\nu} x^{\mu} y^{\nu}+\sum_{\substack{\nu=\lambda+1, \nu \geq 1}}^{I V} \widehat{q}_{0 \nu-1} \frac{1}{\nu} y^{\nu}+\psi(x)
\end{aligned}
$$

with $\nu \widehat{p}_{\mu-1 \nu}=\mu \widehat{p}_{\mu \nu-1}$ for $\mu+\nu=p+1, \mu \geq 1, \nu \geq 1$. Setting $\varphi=\sum^{I V}, \psi=\sum^{I I}$ we arrive at

$$
\widetilde{q}=f=\sum^{I}+\sum^{I I}+\sum^{I I I}
$$

as the desired homogeneous polynomial of degree $p+1$.
Evidently (2.12) implies (2.11). (2.11) furnishes a linear system for the $p+2-2 n$ coefficients of \widetilde{p}. The right hand side \mathfrak{h} of this system consists of the p coefficients of $P_{y}-Q_{x}$. We arrive at

$$
\begin{equation*}
\mathcal{D} \mathfrak{d}=\mathfrak{h} \tag{2.13}
\end{equation*}
$$

\mathfrak{h} is a column with p rows, \mathcal{D} is a matrix with p rows and $p+2-2 n$ columns. \mathcal{D} has only integer entries. We see that by (2.13) the Matrix \mathfrak{C} in (2.10) is diminished. A detailed discussion of (2.11) can be found in [2].

3 Examples First Part

In our first example we deal with $n=1$. Then \mathcal{D} in (2.13) is quadratic and we are interested in det \mathcal{D}. Let $p=4$, thus \widetilde{p} has degree 3 . Set

$$
\widetilde{p}(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3} .
$$

Then

$$
\begin{aligned}
y \widetilde{p}_{x}-x \widetilde{p}_{y} & =y\left(a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right)_{x}-x\left(a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right)_{y} \\
& =y\left(3 a x^{2}+2 b x y+c y^{2}\right)-x\left(b x^{2}+2 c x y+3 d y^{2}\right) \\
& =3 a y x^{2}+2 b x y^{2}+c y^{3}-b x^{3}-2 c x^{2} y-3 d x y^{2} \\
& =-b x^{3}+(3 a-2 c) x^{2} y+(2 b-3 d) x y^{2}+c y^{3}
\end{aligned}
$$

We can easily satisfy $P_{y}-Q_{x}=y \widetilde{p}_{x}-x \widetilde{p}_{y}$ by choosing a suitable \widetilde{p} if for any column $\mathfrak{h}=(\alpha, \beta, \gamma, \delta)^{T}$ the system

$$
\begin{aligned}
0-b+0+0 & =\alpha, \\
3 a+0-2 c+0 & =\beta \\
0+2 b+0-3 d & =\gamma \\
0+0+c+0 & =\delta
\end{aligned}
$$

which means $\mathcal{D} \mathfrak{d}=\mathfrak{h}$, is solvable in the unknowns $\mathfrak{d}=(a, b, c, d)^{T}$. Since

$$
\operatorname{det} \mathcal{D}=\operatorname{det}\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
3 & 0 & -2 & 0 \\
0 & 2 & 0 & -3 \\
0 & 0 & 1 & 0
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ccc}
0 & -1 & 0 \\
3 & 0 & 0 \\
0 & 2 & -3
\end{array}\right)=-\operatorname{det}\left(\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right)=9
$$

this in fact the case. Our second example treats $n=1, p=5$, this is degree $\widetilde{p}=4$ and exhibits a characteristic difference between the cases " \widetilde{p} has odd degree, this is p is even " and " \widetilde{p} has even degree, this is p is odd " which has already been observed by Frommer [1]. The reason is that in case p odd the system (2.13) may not be solvable. For details cf. [2]. If it is solvable however then the first focal value d_{1} in the expansion

$$
\operatorname{det}\left(\begin{array}{cc}
F_{x} & F_{y} \tag{3.1}\\
\mathcal{A} & \mathcal{B}
\end{array}\right)=\sum_{j=1}^{\infty} d_{j}\left(x^{2 j+2}+y^{2 j+2}\right)
$$

vanishes. $F=x^{2}+y^{2}+f_{2}(x, y)+f_{3}(x, y)+\ldots$ is a formal power series whose construction goes back to Poincaré. The oberservation on the disappearance of d_{1} was already made by Frommer [1, p. 406]. We obtain

$$
\begin{aligned}
y \widetilde{p}_{x}-x \widetilde{p}_{y}= & y\left(a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}\right)- \\
& -x\left(a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}\right) y, \\
= & y\left(4 a x^{3}+3 b x^{2} y+2 c x y^{2}+d y^{3}\right)- \\
& -x\left(b x^{3}+2 c x^{2} y+3 d x y^{2}+4 e y^{3}\right), \\
= & 4 a x^{3} y+3 b x^{2} y^{2}+2 c x y^{3}+d y^{4}- \\
& -b x^{4}-2 c x^{3} y-3 d x^{2} y^{2}-4 e x y^{3}, \\
= & -b x^{4}+(4 a-2 c) x^{3} y+(3 b-3 d) x^{2} y^{2}+(2 c-4 e) x y^{3}+d y^{4} .
\end{aligned}
$$

For arbitrary $\mathfrak{h}=(\alpha, \beta, \gamma, \delta, \epsilon)^{T}$ we consider the system $\mathfrak{h}=\mathfrak{D} \mathfrak{d}$, this is

$$
\begin{aligned}
0+-b+0+0+0 & =\alpha, \\
4 a+0-2 c+0+0 & =\beta, \\
0+3 b+0-3 d+0 & =\gamma \\
0+0+2 c+0-4 c & =\delta \\
0+0+0+d+0 & =\epsilon
\end{aligned}
$$

in the variables $\mathfrak{d}=(a, b, c, d, e)^{T}$. Its determinant vanishes since

$$
-\frac{1}{2}(\text { first column of } \mathfrak{D})-\frac{1}{2}(\text { fifth column of } \mathfrak{D})=\text { third column of } \mathfrak{D} .
$$

Since

$$
\operatorname{det} \mathcal{D}^{\prime}=12, \mathcal{D}^{\prime}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
4 & 0 & -2 & 0 \\
0 & 3 & 0 & -3 \\
0 & 0 & 2 & 0
\end{array}\right)
$$

\mathcal{D}^{\prime} has rank 4.

Third example Let $n=2$. We consider

$$
y^{\prime}=-\frac{x^{3}+P(x, y)}{y^{3}+Q(x, y)}
$$

with homogeneous polynomials P, Q of degree 4 and look for a homogeneous polynomial \widetilde{p} of degree 1 ; this means

$$
\widetilde{p}(x, y)=a x+b y
$$

and

$$
P_{y}-Q_{x}=a y^{3}-b x^{3}
$$

In the simplest case we have

$$
P(x, y)=\frac{a}{4} y^{4}, Q(x, y)=\frac{b}{4} x^{4}
$$

and there exists a homogeneous polynomial \widetilde{q} of degree 5 such that the origin is a centre for $y^{\prime}=$ $-\frac{x^{3}+P(x, y)+\frac{1}{4} \widetilde{p}_{x}}{y^{3}+Q(x, y)+\frac{1}{4} \widetilde{q} \widetilde{p}_{y}}$. Interest in this statement could be increased by showing that the origin is a focus for $y^{\prime}=-\frac{x^{3}+P(x, y)}{y^{3}+Q(x, y)}$. To discuss this question is more difficult than in the case $n=1$. We need to find a
substitute for (3.1) and the focal values d_{j}. This was performed in $[1, \mathrm{pp} .412,413]$ and we are going to explain the ideas and some open questions. Transforming (1.1) into plane polar coordinates we get

$$
r^{\prime}=\frac{d r}{d \varphi}=r \frac{\mathcal{A}(r \cos \varphi, r \sin \varphi) \sin \varphi-\mathcal{B}(r \cos \varphi, r \sin \varphi) \cos \varphi}{\mathcal{A}(r \cos \varphi, r \sin \varphi) \cos \varphi+\mathcal{B}(r \cos \varphi, r \sin \varphi) \sin \varphi}=\frac{\mathcal{Z}(\varphi, r)}{\mathcal{N}(\varphi, r)}
$$

Now $r^{\prime}=\mathcal{Z} / \mathcal{N}$ is compared with $r^{\prime}=-\partial \varphi \mathcal{F} / \partial_{r} \mathcal{F}$ where \mathcal{F} is a formal power series $\mathcal{F}(\varphi, r)=$ $\sum_{\lambda \geq 1} f_{\lambda}(\varphi) r^{\lambda}$ in r with coefficient functions $f_{\lambda}:[0,2 \pi] \rightarrow \mathbb{R}$. The result corresponds to (3.1) and reads as follows.

Theorem 2: There is a unique formal power series $\mathcal{F}(\varphi, r)=\sum_{\lambda \geq 2 n} f_{\lambda}(\varphi) r^{\lambda}$ in r with continuously differentiable 2π-periodic functions $f_{\lambda}, f_{\lambda}(0)=1$, and a unique sequence $c_{4 n}, c_{4 n+1}, \ldots$ such that

$$
\operatorname{det}\left(\begin{array}{cc}
\partial_{\varphi} \mathcal{F} & \partial_{r} \mathcal{F} \\
-\mathcal{Z} & \mathcal{N}
\end{array}\right)=\sum_{j=4 n}^{\infty} c_{j} r^{j}
$$

Proof: \quad Set $\mathcal{Z}(\varphi, r)=\sum_{\lambda \geq 2 n} \mathcal{Z}_{\lambda}(\varphi) r^{\lambda}, \mathcal{N}(\varphi, r)=\sum_{\lambda \geq 2 n-1} \mathcal{N}_{\lambda}(\varphi) r^{\lambda}$. If we compare the coefficients of the r-powers in

$$
\mathcal{Z} \partial_{r} \mathcal{F}=-\mathcal{N} \partial_{\varphi} \mathcal{F}+\sum_{j=2 n}^{\infty} c_{j} r^{j}
$$

we arrive at

$$
\begin{aligned}
\sum_{\lambda \geq 2 n} Z_{\lambda}(\varphi) r^{\lambda} \sum_{\lambda \geq 2 n} \lambda f_{\lambda}(\varphi) r^{\lambda-1} & =\sum_{\lambda \geq 2 n} Z_{\lambda}(\varphi) r^{\lambda} \sum_{\lambda \geq 2 n-1}(\lambda+1) f_{\lambda+1}(\varphi) r^{\lambda} \\
& =\left(\sum_{\lambda \geq 0} Z_{\lambda+2 n}(\varphi) r^{\lambda}\right)\left(\sum_{\lambda \geq 0}(\lambda+2 n) f_{\lambda+2 n}(\varphi) r^{\lambda}\right) r^{4 n-1} \\
& =\sum_{\lambda \geq 0}\left(\sum_{\kappa=0}^{\lambda} \mathcal{Z}_{\lambda+2 n-\kappa}(\varphi)(\kappa+2 n) f_{\kappa+2 n}(\varphi)\right) r^{\lambda+4 n-1} \\
& =-\sum_{\lambda \geq 2 n-1} \mathcal{N}_{\lambda}(\varphi) r^{\lambda} \sum_{\lambda \geq 2 n} f_{\lambda}^{\prime}(\varphi) r^{\lambda}+\sum_{j=2 n}^{\infty} c_{j} r^{j} \\
& =-\left(\sum_{\lambda \geq 0} \mathcal{N}_{\lambda+2 n-1}(\varphi) r^{\lambda}\right)\left(\sum_{\lambda \geq 0} f_{\lambda+2 n}^{\prime}(\varphi) r^{\lambda}\right) r^{4 n-1}+\sum_{j=2 n}^{\infty} c_{j} r^{j} \\
& =-\sum_{\lambda \geq 0}\left(\sum_{\kappa=0}^{\lambda} \mathcal{N}_{\lambda+2 n-1-\kappa}(\varphi) f_{\kappa+2 n}^{\prime}(\varphi)\right) r^{\lambda+4 n-1}+\sum_{\lambda \geq 0} c_{\lambda+4 n-1} \cdot r^{\lambda+4 n-1}
\end{aligned}
$$

with $c_{2 n}, c_{2 n+1}, \ldots, c_{4 n-2}=0$,

$$
\sum_{\kappa=0}^{\lambda} \mathcal{N}_{\lambda+2 n-1-\kappa} f_{\kappa+2 n}^{\prime}+\sum_{\kappa=0}^{\lambda} \mathcal{Z}_{\lambda+2 n-\kappa}(\kappa+2 n) f_{\kappa+2 n}=c_{\lambda+4 n-1}
$$

Now $\mathcal{N}_{2 n-1}(\varphi)=\cos ^{2 n} \varphi+\sin ^{2 n} \varphi$ is positive definite and we arrive at

$$
\begin{gather*}
f_{\lambda+2 n}^{\prime}+\frac{(\lambda+2 n) \mathcal{Z}_{2 n}}{\mathcal{N}_{2 n-1}(\varphi)}-f_{\lambda+2 n}+\sum_{\kappa=0}^{\lambda-1} \frac{1}{\mathcal{N}_{2 n-1}(\varphi)}\left(\mathcal{Z}_{\lambda+2 n-\kappa}(\kappa+2 n) f_{\kappa+2 n}+\right. \tag{3.2}\\
\left.+\mathcal{N}_{\lambda+2 n-1-\kappa} f_{\kappa+2 n}^{\prime}\right)=c_{\lambda+4 n-1}
\end{gather*}
$$

for $\lambda \geq 1$ and

$$
\begin{equation*}
f_{\lambda}^{\prime}+\frac{2 n \mathcal{Z}_{2 n}(\varphi)}{\mathcal{N}_{2 n-1}(\varphi)} f_{2 n}=c_{4 n-1} \text { for } \lambda=0 \tag{3.3}
\end{equation*}
$$

Since $\mathcal{Z}_{2 n}(\varphi)=\cos ^{2 n-1} \varphi \sin \varphi-\sin ^{2 n-1} \varphi \cos \varphi$ the coefficient $\mathcal{Z}_{2 n} / \mathcal{N}_{2 n-1}$ is 2π-periodic. Moreover

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\mathcal{Z}_{2 n}(\varphi)}{\mathcal{N}_{2 n-1}(\varphi)} d \varphi=0 \tag{3.4}
\end{equation*}
$$

since $\mathcal{Z}_{2 n}$ is odd. If (3.3) has a 2π-periodic solution the constant $c_{4 n-1}$ has to vanish. In this case each solution of (3.3) is 2π-periodic. As for $\lambda=1$ we obtain

$$
\begin{equation*}
f_{2 n+1}^{\prime}+\frac{(1+2 n) \mathcal{Z}_{2 n}(\varphi)}{\mathcal{N}_{2 n-1}(\varphi)} f_{2 n+1}+\frac{1}{\mathcal{N}_{2 n-1}(\varphi)}\left(2 n \mathcal{Z}_{1+2 n} f_{2 n}+\mathcal{N}_{1+2 n-1} f_{2 n}^{\prime}\right)=c_{4 n} \tag{3.5}
\end{equation*}
$$

If (3.5) has a 2π-periodic solution then $c_{4 n}$ is uniquely determined and every solution of (3.5) is 2π periodic. This follows from (3.4). In general the situation is as follows: If $h, f: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and 2π periodic with $\int_{0}^{2 \pi} h d \psi=0$ and if

$$
\begin{equation*}
y^{\prime}+h y+f=c, c=\text { constant } \tag{3.6}
\end{equation*}
$$

has a 2π-periodic solution then

$$
\begin{equation*}
c=\frac{\int_{0}^{2 \pi} e^{\int_{0}^{\varphi} h d \psi} f d \varphi}{\int_{0}^{2 \pi} e^{\int_{0}^{\varphi} h d \psi} d \varphi} \tag{3.7}
\end{equation*}
$$

and every solution is 2π-periodic. On the other hand, c in (3.7) is the only constant such that every solution of $y^{\prime}+h y+f=c$ is 2π periodic. In view of (3.2) it is now easy to prove the assertion by induction over λ.

According to Frommer [1, p. 412] the constants c_{j} play the rôle of the focal values d_{j} in (1.1). Cf. also section 4 to follow. As for our example $y^{\prime}=-\frac{x^{3}+P(x, y)}{y^{3}+Q(x, y)}=-\frac{x^{3}+(a / 4) y^{4}}{y^{3}+(b / 4) x^{4}}$ we set

$$
\begin{gathered}
P_{3}(x, y)=-x^{3}, Q_{3}=y^{3}, p_{4}=\sin \varphi P_{3}(\cos \varphi, \sin \varphi)+\cos \varphi Q_{3}(\cos \varphi, \sin \varphi) \\
P_{4}(x, y)=-\frac{a}{4} y^{4}, Q_{4}=\frac{b}{4} x^{4}, p_{5}=\sin \varphi P_{4}(\cos \varphi, \sin \varphi)+\cos \varphi Q_{4}(\cos \varphi, \sin \varphi), \\
q_{4}=\cos \varphi P_{3}(\cos \varphi, \sin \varphi)-\sin \varphi Q_{3}(\cos \varphi, \sin \varphi) \\
q_{5}=\cos \varphi P_{4}(\cos \varphi, \sin \varphi)-\sin \varphi Q_{4}(\cos \varphi, \sin \varphi) .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \mathcal{Z}(\varphi, r)=-r\left(\sin \varphi\left(-P_{3}\right) r^{3}+\sin \varphi\left(-P_{4}\right) r^{4}\right)-r\left(\cos \varphi Q_{3} r^{3}+\sin \varphi Q_{4} r^{4}\right) \\
&=-r\left(-p_{4} r^{3}-p_{5} r^{5}\right)=p_{4} r^{4}+p_{5} r^{5} \\
& \mathcal{N}(\varphi, r)=-\left(\cos \varphi\left(-P_{3}\right) r^{3}+\cos \varphi\left(-P_{4}\right) r^{4}+\cos \varphi Q_{3} r^{3}+\cos \varphi Q_{4} r^{4}\right) \\
&=-\left(-q_{4} r^{3}-q_{5} r^{4}\right)=q_{4} r^{3}+q_{5} r^{4} \\
& f_{4}^{\prime}+\frac{4 \mathcal{Z}_{4}}{\mathcal{N}_{3}} f_{4}=0, f_{5}^{\prime}+\frac{5 \mathcal{Z}_{4}}{\mathcal{N}_{3}} f_{5}+\frac{1}{\mathcal{N}_{3}}\left(4 \mathcal{Z}_{5} f_{4}+\mathcal{N}_{4} f_{4}^{\prime}\right)=c_{4 n} \\
& \quad f_{6}^{\prime}+\frac{6 \mathcal{Z}_{4}}{\mathcal{N}_{3}} f_{6}+\frac{1}{\mathcal{N}_{3}}\left(5 \mathcal{Z}_{5} f_{5}+\mathcal{N}_{4} f_{5}^{\prime}\right)=c_{4 n+1} .
\end{aligned}
$$

We intend to show that $c_{4 n+1} \neq 0$ if a, b are chosen appropriately. In terms of the trigonometric polynomials p_{i}, q_{i} we have

$$
\begin{align*}
& f_{4}^{\prime}+\frac{4 p_{4}}{q_{4}} f_{4}=0 \tag{3.8}\\
& f_{5}^{\prime}+\frac{5 p_{4}}{q_{4}} f_{5}+\frac{1}{q_{4}}\left(4 p_{5} f_{4}+q_{5} f_{4}^{\prime}\right)=c_{4 n} \tag{3.9}\\
& f_{6}^{\prime}+\frac{6 p_{4}}{q_{4}} f_{6}+\frac{1}{q_{4}}\left(5 p_{5} f_{5}+q_{5} f_{5}^{\prime}\right)=c_{4 n+1} \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
& p_{4}=-\cos ^{3} \varphi \sin \varphi+\sin ^{3} \varphi \cos \varphi=\cos \varphi \sin \varphi\left(\sin ^{2} \varphi-\cos ^{2} \varphi\right) \\
& p_{5}=-\frac{a}{4} \sin ^{5} \varphi+\frac{b}{4} \cos ^{5} \varphi \\
& q_{4}=-\cos ^{4} \varphi-\sin ^{4} \varphi \\
& q_{5}=-\frac{a}{4} \sin ^{4} \varphi \cos \varphi-\frac{b}{4} \cos ^{4} \varphi \sin \varphi \\
& f_{4}=\exp \left(-\int_{0}^{\varphi}\left(4 p_{4} / q_{4}\right) d \psi\right)(f(0)=1)
\end{aligned}
$$

f_{4} is even. p_{4}, q_{4} have period $\pi, p_{4} / q_{4}$ is odd. Then $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(4 p_{4} / q_{4}\right) d \psi=\int_{0}^{\pi}\left(4 p_{4} / p_{4}\right) d \psi=0$ and f_{4} is π-periodic. Since p_{5}, q_{5} have degree 5 as polynomials in $\sin \varphi, \cos \varphi$ we have $p_{5}(\varphi+\pi)=-p_{5}(\varphi)$, $q_{5}(\varphi+\pi)=-q_{5}(\varphi)$. Every solution to (3.9) with $c_{4 n}=0$ is 2π-periodic (cf. section 4). We thus remain with (3.10). It now turns out, after some tedious calculations, that $c_{4 n+1}=0$ for any choice of a, b. As we will show in the next section we have a focus if there is a coefficient $c_{\lambda+4 n-1} \neq 0$. If on the contrary all $c_{\lambda+4 n-1}$ vanish it should be conjectured that (0,0) is a center. The proof in [1] is not complete however since the lack of convergence of the \mathcal{F}-series requires a more detailed discussion. Thus a decision if at $(0,0)$ there is a focus in our particular example is not yet possible. We are going to take up this question in the next section.

4 Examples Second Part

If in Theorem 2 the first nonvashing constant amongst $c_{4 n}, c_{4 n+1}, \ldots$ is $c_{\lambda_{0}+4 n-1}$ for some $\lambda_{0} \geq 1$ we obtain with $\mathcal{F}=\sum_{\mu=0}^{\lambda_{0}} f_{\mu+2 n} r^{\mu+2 n}$

$$
\begin{gathered}
r^{\prime}-r_{1}^{\prime}=\frac{\mathcal{Z}}{\mathcal{N}}+\frac{\partial_{\varphi} \mathcal{F}}{\partial_{r} \mathcal{F}}=\frac{\mathcal{Z} \partial_{r} \mathcal{F}+\mathcal{N} \partial_{\varphi} \mathcal{F}}{\mathcal{N} \partial_{r} \mathcal{F}}=\frac{1}{\mathcal{N} \partial_{r} \mathcal{F}}\left\{c_{\lambda_{0}+4 n-1} r^{\lambda_{0}+4 n-1}-\sum_{\lambda \geq \lambda_{0}+1}\right. \\
\left.\left(\sum_{\kappa=0}^{\lambda_{0}} \mathcal{Z}_{\lambda+2 n-\kappa}(\kappa+2 n) f_{\kappa+2 n}+\mathcal{N}_{\lambda+2 n-1-\kappa} f_{\kappa+2 n}^{\prime}\right) r^{\lambda+4 n}\right\} \\
=\frac{1}{\mathcal{N} \partial_{r} \mathcal{F}}\left(c_{\lambda_{0}+4 n-1} r^{\lambda_{0}+4 n-1}+\mathcal{O}\left(r^{\lambda_{0}+4 n}\right)\right)
\end{gathered}
$$

Since $f_{2 n}(\varphi)=e^{-\int_{0}^{\varphi} \frac{2 n Z_{2 n}}{\mathcal{N}_{2 n-1}} d \psi}, \partial_{r} \mathcal{F}=2 n f_{2 n} r^{2 n-1}+\ldots, \mathcal{N}=\mathcal{N}_{2 n-1} r^{2 n-1}$ the functions $\partial_{r} \mathcal{F}, \mathcal{N}$ have positive resp. negative definite lowest order coefficients and we obtain

$$
r^{\prime}-r_{1}^{\prime}=\frac{c_{\lambda_{0+4 n}-1}}{2 n f_{2 n} \mathcal{N}_{2 n-1}} r^{\lambda_{0}+1}+\ldots
$$

Thus the origin is a focus.
We now turn to a sharpened version of Theorem 2. It is due to Frommer [1, p. 413]. A remark on trigonometric polynomials

$$
p_{l}(\varphi)=\sum_{\alpha_{1}+\alpha_{2}=l} c_{\alpha_{1} \alpha_{2}} \cos ^{\alpha_{1}} \varphi \sin ^{\alpha_{2}} \varphi, c_{\alpha_{1} \alpha_{2}} \text { constant }
$$

of degree l is in order. We have

$$
\begin{equation*}
p_{l}(\varphi+\pi)=p_{l}(\varphi), l \text { even, } p_{l}(\varphi+\pi)=-p_{l}(\varphi), l \text { odd. } \tag{4.1}
\end{equation*}
$$

Let l be odd, $f, h: \mathbb{R} \rightarrow \mathbb{R}$ continuous and π-periodic with $\int_{0}^{\pi} h d \psi=0$. Then every solution of $(*) y^{\prime}+h y+p_{l} f=0$ is 2π-periodic. This is seen as follows: We have

$$
\begin{aligned}
y^{\prime}(\varphi+\pi)+h y(\varphi+\pi)+p_{l} f(\varphi+\pi) & =0, \\
y^{\prime}(\varphi+\pi)+h(\varphi) y(\varphi+\pi)-p_{l}(\varphi) f(\varphi) & =0 \\
-y^{\prime}(\varphi)-h(\varphi) y(\varphi)-p_{l}(\varphi) f(\varphi) & =0
\end{aligned}
$$

Thus $y(\varphi+\pi)+y(\varphi)$ solves the homogeneous problem. We obtain

$$
\begin{aligned}
y(\varphi+\pi)+y(\varphi) & =(y(\pi)+y(0))\left(\exp \left(-\int_{0}^{\varphi} h d \psi\right)\right) \\
y(\varphi+2 \pi)+y(\varphi+\pi) & =(y(\pi)+y(0))\left(\exp \left(-\int_{0}^{\varphi+\pi} h d \psi\right)\right. \\
& =(y(\pi)+y(0))\left(\exp \left(-\int_{0}^{\varphi} h d \psi\right)\right.
\end{aligned}
$$

This clearly implies $y(\varphi+2 \pi)=y(\varphi)$. Next we show that there is one and only one solution of $(*)$ with $y(\varphi+\pi)+y(\varphi)=0$. The formula for the solution of $(*)$ with initial value $y\left(-\frac{\pi}{2}\right)$ is

$$
y(\varphi)=y\left(-\frac{\pi}{2}\right) \exp \left(-\int_{\frac{\pi}{2}}^{\varphi} h(d \psi)-\int_{-\frac{\pi}{2}}^{\varphi} \exp \left(-\int_{\widetilde{\varphi}}^{\varphi} h d \psi\right) p_{l} f d \widetilde{\varphi}\right.
$$

Thus the desired solution has initial value

$$
\begin{align*}
y\left(-\frac{\pi}{2}\right) & =\left(1+\exp \left(-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} h d \psi\right)\right)^{-1} \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp \left(-\int_{\widetilde{\varphi}}^{\frac{\pi}{2}} h d \psi\right) p_{l} f d \widetilde{\varphi} \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp \left(-\int_{\widetilde{\varphi}}^{\frac{\pi}{2}} h d \psi\right) p_{l} f d \widetilde{\varphi} \tag{4.2}
\end{align*}
$$

It is clearly uniquely determined by the requirement $y(\varphi+\pi)+y(\varphi)=0$. Let l be even. f, h as above. Then $p_{l} f(\varphi+\pi)=p_{l} f(\varphi)$ and any 2π-periodic solution of $(*) y^{\prime}+h y+p_{l} f=0$ is π-periodic. Namely, we have for any solution y the relations

$$
\begin{gathered}
y(\varphi)-y(\varphi+\pi) \text { is } \pi \text {-periodic, thus } \\
y(\varphi+\pi)-y(\varphi+2 \pi)=y(\varphi)-y(\varphi+\pi)
\end{gathered}
$$

whence by $y(\varphi)=y(\varphi+2 \pi)$ it follows

$$
y(\varphi)=y(\varphi+\pi)
$$

(19) holds correspondingly.

Theorem 3: There are a uniquely determined even $\Lambda \in \mathbb{N} \cap\{0,+\infty\}$, uniquely determined continuously differentiable functions $\widehat{f}_{2 n}, \ldots, \widehat{f}_{2 n+\Lambda-2}, \widehat{f}_{2 n+\Lambda-1}, \widehat{f}_{2 n+1}, \widehat{f}_{2 n+\Lambda+1}, \ldots: \mathbb{R} \rightarrow \mathbb{R}$ and uniquely determined numbers $\widehat{d}_{4 n-1}=0, \ldots, \widehat{d}_{4 n+\Lambda-3}=0, \widehat{d}_{4 n+\Lambda-2}=0, \widehat{d}_{4 n+\Lambda-1} \neq 0, \widehat{d}_{4 n+\Lambda}, \ldots$ such that

$$
\begin{align*}
& \widehat{f}_{2 n} \text { is } \pi \text {-periodic, } \widehat{f}_{2 n}\left(-\frac{\pi}{2}\right)=1 \tag{4.3}\\
& \widehat{f}_{2 n+1}(\varphi+\pi)+\widehat{f}_{2 n+1}(\varphi)=0, \widehat{f}_{2 n+1} \text { is } 2 \pi \text {-periodic } \tag{4.4}
\end{align*}
$$

\vdots

$$
\begin{align*}
& \widehat{f}_{2 n+\Lambda-2} \text { is } \pi \text {-periodic, } \widehat{f}_{2 n+\Lambda-2}\left(-\frac{\pi}{2}\right)=1 \text {, } \tag{4.5}\\
& \widehat{f}_{2 n+\Lambda-1}(\varphi+\pi)+\widehat{f}_{2 n+\Lambda-1}(\varphi)=0 \text {, } \widehat{f}_{2 n+\Lambda-1} \text { is } 2 \pi \text {-periodic, } \tag{4.6}\\
& \widehat{f}_{2 n+\Lambda} \text { is } 2 \pi \text {-perodic with } \widehat{d}_{4 n+\Lambda-1} \neq 0, \widehat{f}_{2 n+\Lambda}\left(-\frac{\pi}{2}\right)=1 \text {, } \tag{4.7}\\
& \widehat{f}_{2 n+\Lambda+j} \text { is } 2 \pi \text {-periodic with } \widehat{f}_{2 n+\Lambda+j}\left(-\frac{\pi}{2}\right)=1, j \geq 1 \text {, } \tag{4.8}
\end{align*}
$$

the formal power series $\widehat{\mathcal{F}}(\varphi, r)=\sum_{\lambda \geq 2 n} \widehat{f}_{\lambda}(\varphi) r^{\lambda}$ satisfies

$$
\operatorname{det}\left(\begin{array}{cc}
\partial \varphi \widehat{\mathcal{F}} & \partial_{r} \widehat{\mathcal{F}} \tag{4.9}\\
-\mathcal{Z} & \mathcal{N}
\end{array}\right)=\sum_{j=4 n+\Lambda-1}^{\infty} \widehat{d}_{j} r^{j}
$$

Proof: We employ (3.2) with $\widehat{d}_{4 n+\lambda-1}, \widehat{f}_{2 n+\lambda}$ instead of $c_{4 n+\lambda-1}, f_{2 n+\lambda} \cdot \mathcal{Z}_{\lambda+2 n-\kappa}, \mathcal{N}_{\lambda+2 n-1-\kappa}$ are homogeneous polynomials in $\cos \varphi$ and $\sin \varphi$ of degree $\lambda+2 n-\kappa$. Then $\mathcal{R}(\varphi)=\left(\mathcal{N}_{2 n-1}(\varphi)\right)^{-1}$. $\sum_{\kappa=0}^{\lambda-1}\left(\mathcal{Z}_{\lambda+2 n-\kappa}(\varphi)(\kappa+2 n) \ldots\right)$ in (3.2) has the following properties: Let $\kappa=0, \ldots, \lambda-1$. If

$$
\begin{gather*}
\widehat{f}_{2 n+\kappa}(\varphi+\pi)+\widehat{f}_{2 n+\kappa}(\varphi)=0, \kappa \text { odd } \tag{4.10}\\
\widehat{f}_{2 n+\kappa} \text { is } \pi \text {-periodic, } \kappa \text { even } \tag{4.11}
\end{gather*}
$$

then for λ odd we have $\mathcal{R}(\varphi+\pi)+\mathcal{R}(\varphi)=0$. Moreover there is one and only one constant $\widehat{d}_{\lambda+4 n-1}=$ $c_{\lambda+4 n-1}$ such that every solution of (3.2) is 2π-periodic. This is in fact equivalent to (3.2) having one 2π-periodic solution. Cf. (3.7). $\widehat{d}_{\lambda+4 n-1}$ vanishes if and only if there is an $\widehat{f}_{2 n+\lambda}$ with $\widehat{f}_{2 n+\lambda}(\varphi+\pi)+$ $\widehat{f}_{2 n+\lambda}(\varphi)=0$ and this particular one is uniquely determined. Now let λ be even. Then (4.10, 4.11) imply $\mathcal{R}(\varphi+\pi)-\mathcal{R}(\varphi)=0$ and there is a uniquely determined constant $\widehat{d}_{\lambda+4 n-1}=c_{\lambda+4 n-1}$ such that every solution (equivalent: one solution) of (3.2) is π-periodic. As it is evident, any solution $\widehat{f}_{2 n}$ of (3.3) is π-periodic and $\widehat{d}_{4 n-1}=0$. Now let us consider (3.5). We have $\mathcal{R}(\varphi+\pi)=\mathcal{R}(\varphi)=0$. Thus

$$
\begin{align*}
\int_{0}^{2 \pi} e^{\int_{0}^{\varphi} \frac{(1+2 n) \mathcal{Z}_{2 n}(\psi)}{\mathcal{N}_{2 n-1}(\psi)} d \psi} \mathcal{R}(\varphi) d \varphi & =\int_{0}^{\pi} e^{\int_{0}^{\varphi} \frac{(1+2 n) \mathcal{Z}_{2 n}(\psi)}{\mathcal{N}_{2 n}-1(\psi)} d \psi} \mathcal{R}(\varphi) d \varphi+\int_{\pi}^{2 \pi} e^{\int_{0}^{\varphi} \frac{(1+2 n) \mathcal{Z}_{2 n}(\psi)}{\mathcal{N}_{2 n-1}(\psi)} d \psi} \mathcal{R}(\varphi) d \varphi \\
& =\int_{0}^{\pi} e^{\int_{0}^{\varphi} \frac{(1+2 n) \mathcal{Z}_{2 n}(\psi)}{\mathcal{N}_{2 n}-1(\psi)} d \psi}(\mathcal{R}(\varphi)+\mathcal{R}(\varphi+\pi)) d \varphi \tag{4.12}\\
& =0 \tag{4.13}\\
\widehat{d}_{4 n} & =0
\end{align*}
$$

Now $\widehat{f}_{2 n}$ with $\widehat{f}_{2 n}\left(-\frac{\pi}{2}\right)=1$ and $f_{2 n+1}$ with $f_{2 n+1}(\varphi+\pi)+f_{2 n+1}(\varphi)=0$ are plugged in into (3.2) for $f_{2 n+2}$. If $\widehat{d}_{2+4 n-1} \neq 0$ the point $(0,0)$ is a focus and we proceed as indicated in the Theorem $(\Lambda=2)$. If $\widehat{d}_{2+4 n-1}=0$ we proceed with $\widehat{f}_{2 n+3}$ and find as in $(4.12,4.13)$ that $\widehat{d}_{3+4 n-1}=0$. In general if λ is odd we have $\widehat{d}_{\lambda+4 n-1}=0$ if (4.10) and (4.11) are satisfied. Thus the first \widehat{d}_{j} which does not vanish has the form $\widehat{d}_{4 n+\Lambda-1}$ with Λ even.

As in the beginning of the present section one can show that if there is a first $\widehat{d}_{4 n+\Lambda-1} \neq 0$ then the origin is a focus for $y^{\prime}=-\frac{x^{2 n-1}+P(x, y)}{y^{2 n-1}+Q(x, y)}$. Now we consider $y^{\prime}=-\frac{x^{3}+\frac{a}{4} y^{4}}{y^{3}+\frac{6}{4} x^{4}}$. By some lengthy calculations we again end up with $\widehat{d}_{4 n+\Lambda-1}=\widehat{d}_{9}=0 .(0,0)$ is however likely a focus, at least for appropriate values of a, b. This can be seen from the computer-graphics to follow. They show the integral curves in the x, y-space for initial values $(0,2 ; 0),(0,1 ; 0)$ and $(0,1 ; 0,1)$.

Figure 1: $y^{\prime}=-\frac{x^{3}+y^{4}}{y^{3}+x^{4}}$ in $(0.2,0)$

Figure 2: $y^{\prime}=-\frac{x^{3}+y^{4}}{y^{3}+x^{4}}$ in $(0.1,0)$

Figure 3: $y^{\prime}=-\frac{x^{3}+y^{4}}{y^{3}+x^{4}}$ in $(0.1,0.1)$

References

[1] Frommer, M.: Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen., Math. Ann. 109, 395-424 (1934)
[2] Wahl, W. von: On the differential equation $y p_{x}-x p_{y}=R$ for real analytic functions with unknown p. Preprint.
http://www.uni-bayreuth.de/departments/math/org/mathe6/publ/wvwpublic.html.

