Generation of Centres by Adding Higher Order
. 2?1y P(z,y)
y?14Q(2,y)

Terms in ' =

Wolf von Wahl
Universitat Bayreuth
Department of Mathematics
D-95440 Bayreuth, GERMANY

March 1, 2007

Synopsis:
We systematically study the question how to convert a focus into a centre. This question was first raised
by Frommer [1].

1 Introduction
Let n € N. P(z,y),Q(z,y) are polynomials in z,y starting with terms of order 2n at least. If

) = T 4 Pay)  Alzy) (11)

yrt 4 Qy)  Bla,y)
has a focus at the critical point (0,0) it is sometimes possible to convert (0,0) into a centre by adding
higher order polynomials in the numerator and denominator. Frommer [1] was the first to study the
influence of higher order terms on the question whether (1.1) can be made a centre or not. Our work ist

motivated by his contributions.

2 Systematic Approach

As announced we intend to convert a focus y’ = — “é((;cz)) into a centre by replacing the preceding equation

by v = —%. The additional terms Z1(z,y), Z2(z,y) vanish faster than A(z,y), B(z,y) at

(0,0).

We are needing a Eulerian multiplier. Since such a multiplier does not vanish it is close by to try it
with an expression p = ce? (c constant # 0, p an appropriate function). We start with n € N,

Alz,y) = 22" '+ P(x,y), (2.1)

B(xvy) = y2n71+Q('r7y)v (22)

P, Q@ homogeneous polynomials of one and the same degree p > n. With still unknown polynomials ¢, p
we try the ansatz

221 4 P+ Lgp, 2n(x*""' + P+ 3-p.)

Y+ Q+ qpy 20(yP N+ Q + =qpy)

(271562”_1 + gz) + (x2n +y2n +‘qv)’ﬁz
ny2n—1 + ’d’y) + (x2n + y2n + a’)ﬁy

(2

B [(2®™ 4+ y*" + q)e?]
9y [(x?" +y*" + q)e?]
O F

= with F = (2" 4+ y*" + §)eP, pu = 2neP. (2.3)
Oy F




If

gradq > 2n+1 (2.4)
the level lines of F' are closed and the origin is a centre for y' = —g%"g? provided
2n Y
2nP = g, + (2*" + y*")Pas (2.5)
2nQ = g, + (#*" + y*")py. (2.6)

The additional term in the denominator is s-¢p, and in the numerator it is s~¢p,. Let us compare the
q Wo h 2n 1Y 2n
egrees. We have

deg P =deg Q =p > 2n. (2.7)

Consequently
degqg = p+1, (2.8)
2n—1+degp = p,degp=p—(2n—1). (2.9)

For the given 2(p+ 1) coefficients of P, Q) we have at our disposal 2p+2+2 — 2n = 2p+ 4 — 2n coefficients
of ¢ and p. If the coefficient vectors of P,Q,q,p are a, b, ¢, 0 respectively we arrive at a linear system

(5)=e(2). 20

Here a, b have p+ 1 rows each. (ab)? is a column, C has 2(p+ 1) rows and 2(p+ 1) 4+ 2 — 2n columns, ¢, ?
have p+2, p— (2n — 1) + 1 = p — 2n + 2 rows respectively and (¢9)7 is a column. For n = 1 the matrix
C is quadratic. At most in the case (2.10) has a solution (¢d)7 for any right hand side (ab)?. For n > 2
the system (2.10) is overdetermined. C has only nonnegative integer entries.

We achieve a considerable simplification if we exploit the structure of (2.5,6).

Theorem 2.1 Let n € N and P,Q homogeneous polynomials in x,y of degree p > 2n. Let p a homoge-
neous polynomial of degree p — (2n —1). Let

y2n_1ﬁm - x2n_1ﬁy = Py - Qm (211)

Then there is a homogeneous polynomial q of degree p+ 1 such that (2.5,6) are valid. This means

2nP = qx+ (2% + y*")pu,
(2.12)
2nQ = q~y + (IQn + an)ﬁy

Proof: (2.11) implies that (2nP — (z°" + y*™)ps, 2nQ — (z®" + y*")p,) is a gradient. Set for instance

Ouf = Y Dua"y’ =2nP — (2™ +y*")pu,
v+p=p

Of = Y Guaty” =20Q — (™" +y™)p,.
v+p=p

Since we have on the right hand side the Taylor expansions for d, f, 9, f around the origin we obtain that
f is a polynomial with degree p + 1. Employing principal functions in x,y respectively we get
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with vp,,—1, = ppuv—1 for p+v=p+1, p>1, v > 1. Setting ¢ = Elv, = ZH we arrive at
I I III
-3 Y

as the desired homogeneous polynomial of degree p + 1. (|

Evidently (2.12) implies (2.11). (2.11) furnishes a linear system for the p + 2 — 2n coefficients of p.
The right hand side b of this system consists of the p coefficients of P, — Q.. We arrive at

Do = . (2.13)

b is a column with p rows, D is a matrix with p rows and p+ 2 — 2n columns. D has only integer entries.
We see that by (2.13) the Matrix € in (2.10) is diminished. A detailed discussion of (2.11) can be found
in [2].

3 Examples First Part

In our first example we deal with n = 1. Then D in (2.13) is quadratic and we are interested in det D.
Let p = 4, thus p has degree 3. Set

p(z,y) = az® + bx?y + cxy® + dy’.
Then

ype —apy = ylaz® +br’y + cay® + dy®). — x(az® + ba’y + cay® + dy?)y,
y(3ax? + 2bxy + cy?) — x(bx? + 2cay + 3dy?),

= 3ayz® + 2bxy® + cy® — ba® — 2cay — 3day?,

= —baz®+ (3a — 2c)2?y + (2b — 3d)zy® + cy.

We can easily satisfy P, — Q. = yp. — oD, by choosing a suitable p if for any column b = («, 3,7,8)T
the system

0-b+04+0 = g«
3a+0—-2c+0 = f,
0+204+0—-3d = 7,

0+04¢+0 = 4,

which means Do = b, is solvable in the unknowns ? = (a,b, ¢, d)”. Since

0 -1 0 0
0 -1 0
3 0 -2 0 3 0
det D = det =—det| 3 0 0 = —det =9
0 2 0 -3 0 -3
0 2 -3
0 0 1 0

this in fact the case. Our second example treats n = 1, p = 5, this is degree p = 4 and exhibits a
characteristic difference between the cases ”"p has odd degree, this is p is even ” and ”p has even degree,
this is p is odd ” which has already been observed by Frommer [1]. The reason is that in case p odd the
system (2.13) may not be solvable. For details cf. [2]. If it is solvable however then the first focal value
dy in the expansion

F, F, x |
det = Z dj (2?72 4 42712 (3.1)
A B j=1



vanishes. F' = 22 + 32 + fo(z,y) + f3(z,y) + ... is a formal power series whose construction goes back to
Poincaré. The oberservation on the disappearance of d; was already made by Frommer [1, p. 406]. We
obtain

ybe —apy = ylaz* +ba’y + ca®y® + day® + ey?) —
—z(az* + by + cx?y? + dry® + ey*)y,
= y(4ax® + 3bx?y + 2cay® + dy®) —
—2(bx® + 2ca’y + 3dxy® + dey®),
= 4dax’y + 3bz*y? + 2cxy® + dy* —
—bzt — 2cay — 3dx*y? — dexy?,
= —bz' + (4a — 20)23y + (3b — 3d)xy* + (2¢ — de)ay® + dy’.

For arbitrary h = («, 3,7, d,€)T we consider the system h = D0, this is

0+—-b+0+0+0 = o,
4a+0—-2c+0+0 = 3,
04+304+0—-3d+0 = =,
04+0+2c+0—4c = ¢,

0+04+04+d+0 = €

in the variables 0 = (a, b, ¢, d, e)T. Its determinant vanishes since

1 1
—5( first column of ®) — g(ﬁfth column of ®) = third column of D.

Since

0 -1 0 0

, , 4 0 =2 o0
detD' =12, D' = | o o 7 O,

0 O 2 0
D’ has rank 4.
Third example Let n = 2. We consider

’ z® + P(z,y)

Y =""=3T -~
Yy +Q(z,y)
with homogeneous polynomials P, @ of degree 4 and look for a homogeneous polynomial p of degree 1;
this means

plx,y) = ar + by

and

P, -Q, = ay® — ba®.
In the simplest case we have

a b
P(:an) = Zy47 Q(Iay) = Zx4

and there exists a homogeneous polynomial ¢ of degree 5 such that the origin is a centre for y' =
_ @4 P(2,y)+ 1 qPe
y3+Q(z,y)+1 by
;34 P(zy)
Y = TPy

. Interest in this statement could be increased by showing that the origin is a focus for

To discuss this question is more difficult than in the case n = 1. We need to find a



substitute for (3.1) and the focal values d;. This was performed in [1, pp. 412,413] and we are going to
explain the ideas and some open questions. Transforming (1.1) into plane polar coordinates we get

dr
/ [ —
dy A(rcos,rsing)cosp + B(rcosp,rsing)sing  N(p,7)

A(r cos @, rsin @) sinp — B(rcosp,rsinp)cosp  Z(p,r)

.
Now ' = Z/N is compared with 7' = —9d¢F/0,F where F is a formal power series F(p,r) =
> a1 fr(@)r* in 7 with coefficient functions fy : [0,27] — R. The result corresponds to (3.1) and

reads as follows.

Theorem 2: There is a unique formal power series F(p,r) = Z)\ZM Ia(@)r™ in r with continuously

differentiable 2m-periodic functions fx, f(0) =1, and a unique sequence Can,Cant1, ... such that
0,F o F ) .
det = Z c;r?
-z N j=4n

Proof: Set Z(p,r) = Z Zy(p)r*, N(p,r) = > oasan_1 Malp)r?. If we compare the coefficients of
A>2n
the r-powers in

Z0,F = -NOF+ Y ¢ejr

Jj=2n

we arrive at

3 Zar YA = Y Zaert D A+ D faga(e)r?

A>2n A>2n A>2n A>2n—1

- (Z Z“?"(*")M)(Z(A +2n) faran(@)r?)rin !

A>0 A>0

A
= Z(Z Z)x+2n7/<(</7) (IQ + 2n)f,{+2n(gp))r)‘+4n*1

A>0 k=0

= = > M@ D A+ Y e

A>2n—1 A>2n j=2n

= —(Z NA+2n71(<P)TA)(Z Praan(@)r)rtn =t 4 Z cjr!

2>0 A>0 j=2n
A
Atdn—1 Atdn—1
= =D O Nuza1wl@ @)+ engang
A>0 ©=0 A>0
with con, cont1,. .., can—2 =0,

A A

ZN)\+2’R—1—Hf}/§+2n + Z Z)\+2n—m(f€ + 2n)fm+2n = Ch+4n—1
k=0 k=0

Now Nap_1(p) = cos®™ ¢ + sin®" ¢ is positive definite and we arrive at

A—1

, ()\ + 2”)22n 1
oI o+ Y (Bagonn (k4 20) faont 3.2
f)\+2 Nanl (4/7) f>\+2 KZZO Nanl ((p) ( A+2 ( )f +2 ( )
+N)\+2’ﬂ—1—ﬁff/§+2n) = Ch+4n—1
for A>1 and
i+ wﬁn = Cyn_q for A=0 (3.3)
Non—1()
Since Za, (@) = cos®™ ! psin p — sin®* ! p cos ¢ the coefficient 2o, /Ns,_1 is 27-periodic. Moreover
2
Zon ()

———dp =0 3.4
0 Newa(9) " (34

5



since Za, is odd. If (3.3) has a 27-periodic solution the constant c¢4,—1 has to vanish. In this case each
solution of (3.3) is 2m-periodic. As for A = 1 we obtain

Jana Nop—1() Nop—1()

If (3.5) has a 2m-periodic solution then ¢y, is uniquely determined and every solution of (3.5) is 27-
periodic. This follows from (3.4). In general the situation is as follows: If h, f : R — R are continuous

and 27 periodic with fo% hdy = 0 and if

fons1 + (2nZ1 490 fon + Niton—1fo,) = Can (3.5)

vy +hy+ f=c, c= constant, (3.6)
has a 27-periodic solution then
2 ® hdip
c= %# (3.7)
fo elo dy

and every solution is 2m-periodic. On the other hand, ¢ in (3.7) is the only constant such that every
solution of y' + hy + f = ¢ is 2x periodic. In view of (3.2) it is now easy to prove the assertion by
induction over A. (]

According to Frommer [1, p. 412] the constants ¢; play the role of the focal values d; in (1.1). Cf.

also section 4 to follow. As for our example y’ = —iziggizg = _T;iiﬁ‘;//j));’i we set
Ps(z,y) = —2°, Q3=1y", ps = sinpPs(cosp,sin @) + cos pQs(cos @, sin ),
@ 4 b 4 : ; i
Py(z,y) = —Zy , Qq = Z:v , D5 = sin @ Py (cos ¢, sin @) + cos pQ4(cos @, sin ¢),
qa = cosePs(cosy,sinp) — sinpQs(cos @, sin p),
g5 = cospPy(cosp,sing) — sin pQ4(cos ¢, sin ).
Then
Z(p,r) = —r(sing(—Ps)r® + sin <p(—P4)r4) — 7(cos Q31> + sin pQar?),
= —r(—par® — psr®) = par* + p5r°,
N(e,r) = —(cos p(—Ps)r® + cos p(—Py)r* + cos pQar® 4 cos oQur),

= —(—(J47”3 - (J57”4) = qur® + g5,

4Z 5Z.
fi+ N4f4—0 fh+ N4f5+ N(425f4+/\/4f4)—04n

fo+ N f6 + (5Z5f5 + Nuafs) = cant1.

We intend to show that cg,4+1 # 0 if a,b are chosen appropriately. In terms of the trigonometric polyno-
mials p;, q; we have

4

fit+ =0, (3.8)
da
)

i+ 22 f5 + (4P5f4 +a5f1) = can- (3.9)
6p4

fe+ _f6 +— “ (5p5f5 + a5 f5) = cant1, (3.10)



ps = —cos®@singp +sin® g cosp = cos psin go(sin2 @ — cos® ),
a . 5 b 5

ps = —Zsm <p—|—1cos ©,

g1 = —cos? w— sin? o,
a . 4 b 4 .

¢ = —ysin@cosp— 7 costpsing,

fi = expl— / " (4pa/an)dp)(F(0) = 1).

fa is even. pg4,qq have period 7, py/qs is odd. Then f_%% (4pa/qu)dy = [ (4ps/ps)dp = 0 and f4
is m-periodic. Since ps, g5 have degree 5 as polynomials in sin g, cos¢ we have ps(p + 7) = —ps(p),
g5(¢ + ) = —¢5(p). Every solution to (3.9) with ¢4, = 0 is 2m-periodic (cf. section 4). We thus remain
with (3.10). It now turns out, after some tedious calculations, that c4,+1 = 0 for any choice of a,b. As
we will show in the next section we have a focus if there is a coefficient cy14,—1 # 0. If on the contrary all
Cxrt4n—1 vanish it should be conjectured that (0,0) is a center. The proof in [1] is not complete however
since the lack of convergence of the F-series requires a more detailed discussion. Thus a decision if at
(0,0) there is a focus in our particular example is not yet possible. We are going to take up this question
in the next section.

4 Examples Second Part

If in Theorem 2 the first nonvashing constant amongst c4n, Cant1,... 18 Crg+an—1 for some Ao > 1 we
obtain with F = 220:0 furonrhT2n

., Z 0, F  ZaF4+NOF 1

r—r = W + 0F NOTF = Vo F c)\0+4n_17)\0+4n—1 _ Z
' " " A>Ao+1
Ao
(Z Zyton—n(k +2n) fruton + N/\+2n—1—nf,/<+2n)7°’\+4"}
K=0
1

= N F (ot LOTE).

B 21 2o,
Since fan(p) = e I& 7;%*1@}, O F = 2nfonr®™ L+ .., N = Nop_172"7! the functions 9, F, N have

positive resp. negative definite lowest order coeflicients and we obtain

Chopan—1
r—r = —foranT gl g
2n fonNon—1

Thus the origin is a focus.

We now turn to a sharpened version of Theorem 2. It is due to Frommer [1, p. 413]. A remark on
trigonometric polynomials

(e} 1O
pi(p) = E Cayoy COSTE SINY? ) €y, cOnstant,

a1 tas=l

of degree [ is in order. We have

pi(e+7) = pi(p), L even,pi(p + ) = —pi(¢), 1 odd. (4.1)

Let [ be odd, f,h : R — R continuous and w-periodic with fow hdy = 0. Then every solution of
(*)y' 4+ hy + pif = 0 is 2m-periodic. This is seen as follows: We have



Y(e+m) +hyle+m)+pifle+m) = 0,
Y (p+7) +h(e)yle +7) —pile)flp) = 0,

=y’ (¢) = h(@)y(p) —pi(p)fle) = 0.

Thus y(p + m) + y(p) solves the homogeneous problem. We obtain

W+ +ule) = () +yO)exs(- [  hdy)),

0
o
ylo+2m) +yle+m) = (y(ﬂ)+y(0))(exp(—/0 hdi),
— (m + O exn(- [ " hdy).

This clearly implies y(¢ + 27) = y(p). Next we show that there is one and only one solution of (*) with

y(¢ + ) +y(¢) = 0. The formula for the solution of () with initial value y(—7) is

o) =u(-grewl= [ naw) - [ oo [ nivmsaz

s -z
2

[ME]

Thus the desired solution has initial value

1+ exp(- [ T haw) /

z
2

3)

y(— exp(— /f hdy)p, fdp,
@

[SE]

™

_ %/_ exp(— /@ hdi)p.f A3, (4.2)

It is clearly uniquely determined by the requirement y(¢ + 7) + y(p) = 0. Let [ be even. f,h as above.
Then p;f(p + 7) = pif(¢) and any 27-periodic solution of (x)y’ + hy + p;f = 0 is w-periodic. Namely,
we have for any solution y the relations

y(p) — y(p + ) is m-periodic, thus

y(o+m) —ylp+2m) =y(p) —y(p + )
whence by y(p) = y(¢ + 27) it follows

y(p) =ylp+m)
(19) holds correspondingly.
Theorem 3: There are a uniquely determined even A € NN {0, +oo}, uniquely determined continuously
differentiable functions fon, ..., fonta—2, fonta—1, font1, fontatl, .- R = R and uniquely determined
numbers dgp—1 =0, ..., dapsa—3 = 0,danyar—2 = 0,daniar—1 # 0,dantn, ... such that



Fan is m-periodic, fgn(—g) =1 (4.3)

Fons1(0 +7) + font1(9) = 0, fong1 is 2m-periodic, (4.4)

~ . . . ~ T
fonta—o is m-periodic, f2n+A,2(—§) =1, (4.5)
Fansn-1(¢ +7) + fansn-1(9) =0, fansn-r is 2m-periodic, (4.6)
fgnJrA 1s 2mw-perodic with @mﬂ_l #0, fgnJrA(—g) =1, (4.7
Fonsnsy is 2m-periodic with ﬁnMﬂ(—g) =1,j>1, (4.8)
the formal power series F(p,r) = > asan Fl@)r™ satisfies
dpF 0, F <
det = > dp (4.9)
-Z N j=4dn+A—1

Proof: We employ (3.2) with c@ln+,\_1, fgn+,\ instead of cinia—1, fonixn-Zaton—n, NMaton_1_x are
homogeneous polynomials in cos¢ and sing of degree A + 2n — k. Then R(p) = (Nop_1(p))~ L -

Zz;é(ZAHn,,{(ga)(m +2n)...) in (3.2) has the following properties: Let K =0,...,A— 1. If

Fonin(@ + ) + fansn(p) =0, & 0dd, (4.10)

Fanar is m-periodic, x even, (4.11)
then for A odd we have R(¢ + 7) + R(¢) = 0. Moreover there is one and only one constant drpan_1 =
Crt4an—1 such that every solution of (3.2) is 2m-periodic. This is in fact equ1valent to (3 2) having one
2m-periodic solution. Cf. (3.7). dA+4n 1 vanishes if and only if there is an f2n+>\ with f2n+A(<p + )+
]?szr,\(cp) = 0 and this particular one is uniquely determined. Now let A be even. Then (4.10, 4.11)
imply R(p + 7) — R(p) = 0 and there is a uniquely determined constant L/Z\A+4n,1 = Cat4n_1 such that
every solution (equivalent: one solution) of (3.2) is m-periodic. As it is evident, any solution Fan of (3.3)
is 7-periodic and dy,_; = 0. Now let us consider (3.5). We have R(p + ) = R(¢) = 0. Thus

27 n n 2m n
/ IR R (D) = / I BSSERR ()dp + / I RS R (o),
0 ™
(142n) Z9, (1)
_ / I RS M (R () + Rip + 1)) dep, (4.12)
_ (4.13)
(/i\4n =0

Now fgn with fgn(——) =1 and fop41 with fo,41(p + 7) + fant1() = 0 are plugged in into (3.2) for
f2n+2 If d2+4n 1 # 0 the pomt (0,0) is a focus and we proceed as indicated in the Theorem (A = 2). If
d2+4n 1 = 0 we proceed with f2n+3 and find as in (4.12, 4.13) that d3+4n 1 = 0. In general if X is odd
we have dyyan_1 = 0 if (4.10) and (4.11) are satisfied. Thus the first d which does not vanish has the
form d4n+ A—1 with A even. [l

As in the beginning of the present section one can show that if there is a first J4n+ A—1 # 0 then the
2n—1 3 ,a,4

origin is a focus for y' = ﬁggmy; Now we consider ' = —;31—%;.

we again end up with d4nJr Al = dg = 0. (0,0) is however likely a focus, at least for appropriate values

of a,b. This can be seen from the computer-graphics to follow. They show the integral curves in the

x, y-space for initial values (0,2;0), (0,1;0) and (0,1;0,1).

By some lengthy calculations
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