On the differential equation $y p_{x}-x p_{y}=R$ for real analytic functions with unknown p

Wolf von Wahl. Universität Bayreuth, Department of Mathematics, D-95440 Bayreuth, Germany 16.03.2007

Synopsis The differential equation $y p_{x}-x p_{y}=R$ is investigated. We are looking for solutions being analytic in a neighborhood of the origin.

I. Introduction

When studying Poincaré's centre problem

$$
y^{\prime}=-\frac{x+P}{y+Q}=-\frac{\mathcal{A}(x, y)}{\mathcal{B}(x, y)}
$$

around $(0,0)$ a major rôle is played by the differential equation

$$
\begin{equation*}
y p_{x}-x p_{y}=R \tag{1}
\end{equation*}
$$

with given right hand side R. It serves to construct recursively a formal power series p with

$$
\text { (A) } \quad \operatorname{det}\left(\begin{array}{cc}
p_{x} & p_{y} \\
\mathcal{A} & \mathcal{B}
\end{array}\right)=\sum_{j=1}^{\infty} d_{j}\left(x^{2 j+2}+y^{2 j+2}\right)
$$

In the present paper we derive necessary and sufficient conditions on R under which (1) has as solution a formal power series around $(0,0)$. Then convergence is studied.

II. Recursion

Let $R=r_{1}+r_{2}+\ldots$ be a formal power series around $(0,0)$ with homogeneous parts r_{i} of degree i. For p we use the ansatz $p=p_{1}+p_{2}+\ldots$ with homogeneous parts of degree i again. The equation in question is solved for each degree l separately. This means we solve

$$
y p_{l x}-x p_{l y}=r_{l}, l \geq 1
$$

For convenience we write occasionally p, r instead of p_{l}, r_{l}. Let

$$
\begin{aligned}
p & =\sum_{\nu+\mu=l} p_{\nu \mu} x^{\nu} y^{\mu} \\
r & =\sum_{\nu+\mu=l} r_{\nu \mu} x^{\nu} y^{\mu}
\end{aligned}
$$

Then

$$
\begin{aligned}
p_{x} & =\sum_{\nu+\mu=l} \nu p_{\nu \mu} x^{\nu-1} y^{\mu}=\sum_{\nu+\mu=l-1}(\nu+1) p_{\nu+1 \mu} x^{\nu} y^{\mu} \\
y p_{x} & =\sum_{\nu+\mu=l-1}(\nu+1) p_{\nu+1 \mu} x^{\nu} y^{\mu+1}=\sum_{\nu+\mu=l}(\nu+1) p_{\nu+1 \mu-1} x^{\nu} y^{\mu} \\
p_{y} & =\sum_{\nu+\mu=l} \mu p_{\nu \mu} x^{\nu} y^{\mu-1}=\sum_{\nu+\mu=l-1}(\mu+1) p_{\nu \mu+1} x^{\nu} y^{\mu} \\
x p_{y} & =\sum_{\nu+\mu=l}(\mu+1) p_{\nu-1 \mu+1} x^{\nu} y^{\mu}
\end{aligned}
$$

For the coefficients of p, r we thus obtain

$$
\begin{equation*}
(\nu+1) p_{\nu+1 \mu-1}-(\mu+1) p_{\nu-1 \mu+1}=r_{\nu \mu}, \nu+\mu=l \tag{2}
\end{equation*}
$$

Proposition 1: Let $\nu+\mu=l$ be odd. Then (2) has a unique solution $p_{0 l}, p_{1 l-1}, \ldots, p_{l 0}$.

Proof: (2) reads as follows.

$$
\begin{aligned}
1 \cdot p_{1 l-1} & =r_{0 l} \\
2 \cdot p_{2 l-2}-l \cdot p_{0 l} & =r_{1 l-1} \\
3 \cdot p_{3 l-3}-(l-1) p_{1 l-1} & =r_{2 l-2} \\
\vdots & \\
l \cdot p_{l 0}-2 p_{l-22} & =r_{l-11} \\
-p_{l-11} & =r_{l 0}
\end{aligned}
$$

First we consider $p_{\nu+1 \mu-1}, p_{\nu-1 \mu+1}$ with $\nu+1, \nu-1$ odd. Then we can solve

$$
\begin{aligned}
& 1 \cdot p_{1 l-1}=r_{0 l} \\
& 3 \cdot p_{3 l-3}-(l-1) p_{1 l-1}=r_{2 l-2} \\
& 5 \cdot p_{5 l-3}-(l-3) p_{3 l-3}=r_{4 l-4} \\
& \vdots \\
& l \cdot p_{l 0}-2 p_{l-22}=r_{l-11}
\end{aligned}
$$

succesively and see that the $p_{\lambda \mu}$ with λ odd are determined uniquely. As for $\nu+1, \nu-1$ even we obtain

$$
\begin{aligned}
2 p_{2 l-2}-l p_{0 l} & =r_{1 l-1} \\
4 p_{4 l-4}-(l-2) p_{2 l-2} & =r_{3 l-3} \\
\vdots & \\
(l-1) p_{l-11}-3 p_{l-33} & =r_{l-22} \\
-p_{l-11} & =r_{l 0} .
\end{aligned}
$$

Starting backward with p_{l-11} we arrive at the uniquely determined $p_{\lambda \mu}$ with even λ.

If l is even the situation is more complicated.
Proposition 2: Let $\nu+\mu=l$ be even. Then (2) has a solution if and only if a compatibility condition holds. This is

$$
\begin{equation*}
\sum_{i=0}^{l / 2} a_{2 i}^{(l)} r_{2 i l-2 i}=0 \text { for } l \text { even } \tag{3}
\end{equation*}
$$

with certain uniquely determined coprime positive integers $a_{0}^{(l)}, a_{2}^{(l)}, \ldots, a_{l}^{(l)}$.
Proof: Let $\nu+1, \nu-1$ be odd. We obtain

$$
\left\{\begin{array}{l}
1 \cdot p_{1 l-1}=r_{0 l} \tag{4}\\
3 \cdot p_{3 l-3}-(l-1) p_{1 l-1}=r_{2 l-2} \\
\vdots \\
(l-1) p_{l-11}-3 p_{l-33}=r_{l-22}
\end{array}\right.
$$

$$
\begin{equation*}
-p_{l-11}=r_{l 0} \tag{5}
\end{equation*}
$$

(4) determines $p_{1 l-1}, \ldots, p_{l-11}$ uniquely. To fulfill (5) we need

$$
\begin{aligned}
3 p_{3 l-3} & =(l-1) p_{1 l-1}+r_{2 l-2} \\
& =(l-1) r_{0 l}+r_{2 l-2}
\end{aligned}
$$

Now

$$
5 p_{5 l-5}=(l-3) p_{3 l-3}+r_{4 l-4}
$$

If we insert for $p_{3 l-3}$ and continue this way we arrive at

$$
(l-1) p_{l-11}=\sum_{i=1}^{(l-2) / 2} q_{2 i}^{(l)} r_{2 i l-2}
$$

with positive rational numbers $q_{2 i}^{(l)}$. Employing (5) yields the assertion (3). If $\nu+1, \nu-1$ are even we obtain

$$
\left\{\begin{array}{l}
2 p_{2 l-2}-l p_{0 l}=r_{1 l-1} \tag{6}\\
4 p_{4 l-4}-(l-2) p_{2 l-2}=r_{3 l-3} \\
\quad \vdots \\
l p_{l 0}-2 p_{l-22}=r_{l-11}
\end{array}\right.
$$

(6) is underdetermined and has infinitely many solutions which can be parametrized with respect to $\lambda_{l}=p_{0 l}$.

We arrive now at

Theorem 3:

1. Let

$$
R=\sum_{\nu+\mu \geq 1} r_{\nu \mu} x^{\nu} y^{\mu}
$$

be a formal power series. Then there is a formal power series

$$
\begin{equation*}
p=\sum_{\nu+\mu \geq 1} p_{\nu \mu} x^{\nu} y^{\mu} \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
y p_{x}-x p_{y}=R \tag{8}
\end{equation*}
$$

provided (3) is satisfied. If conversely (8) is satisfied for a formal power series (7) then (3) holds.
2. Let p be a formal power series as in 1. In particular (8) is satisfied. If $\mathfrak{x}=(x, y)^{T}$ and

$$
i_{0}=\min \left\{i \mid r_{i} \not \equiv 0\right\} \geq 2
$$

then we may have $p=0\left(|\mathfrak{x}|^{i_{0}}\right)$ formally, this is: p starts with $r_{i_{0}}$ only.
Proof: The first part follows from Propositions 1 and 2 and the necessity of $(4,5)$. As for the second part we remark that

$$
r_{\nu \mu}=0 \text { for } \nu+\mu \leq i_{0}-1
$$

Thus we can set $p_{\nu \mu}=0, \nu+\mu \leq i_{0}-1$.

Some examples may in order now.

Example 1. We consider the question if in

$$
y^{\prime}=-\frac{x+4 x^{2} y+y^{3}}{y-2 x^{3}+x y^{2}}
$$

the origin can be made a center by adding higher order polynomials in the numerator and the denominator. This is example 3 in [1, p. 406]. Moreover it is shown in [1] that $d_{1}=0, d_{2} \neq 0$ in the expansion (A). In fact we prove in [2] that our question can be answered positively if

$$
\begin{aligned}
y p_{x}-x p_{y} & =R=P_{y}-Q_{x} \text { with } \\
P & =4 x^{2} y+y^{3} \\
Q & =2 x^{3}+x y^{2}
\end{aligned}
$$

is solvable in the sense of Theorem 3. Since degree $\left(P_{y}-Q_{x}\right)=2$ is even we have to employ (3). Since $(4,5)$ read

$$
\begin{aligned}
p_{11} & =r_{02} \\
-p_{11} & =r_{20}
\end{aligned}
$$

this is

$$
r_{02}+r_{20}=0
$$

and since

$$
R=P_{y}-Q_{x}=4 x^{2}+3 y^{2}-b x^{2}-y^{2}=-2 x^{2}+2 y^{2}
$$

thus satisfies (3), the present example can be subsumed under Theorem 3.

Example 2. Let R be a homogeneous polynomial of degree 4 . Then $(4,5)$ read

$$
\begin{aligned}
p_{13} & =r_{04} \\
3 p_{31}-3 p_{13} & =r_{22} \\
-p_{31} & =r_{40}
\end{aligned}
$$

The necessary and sufficient condition for the solvability of this system is

$$
3 r_{04}+r_{22}+3 r_{40}=0
$$

this is

$$
\begin{gathered}
\sum_{i=0}^{2} a_{2 i}^{(4)} r_{2 i l-2 i}=0 \text { with } \\
a_{0}^{(4)}=3, a_{2}^{(4)}=1, a_{4}^{(4)}=3 .
\end{gathered}
$$

III. Convergence

In this section we are going to show that convergence of the power series R implies convergence of the power series p provided (3) is satisfied.

Let l be odd. According to the proof of Proposition 1 the first system we have to solve is

$$
\begin{aligned}
p_{1 l-1}+0+0+0+\ldots+0+0 & =r_{0 l} \\
-(l-1) p_{1 l-1}+3 p_{3 l-3}+0+0+\ldots+0+0 & =r_{2 l-2} \\
0-(l-3) p_{3 l-3}+5 p_{5 l-5}+0+\ldots+0+0 & =r_{4 l-4} \\
\vdots & \\
0+0+0+0+\ldots-2 p_{l-22}+l p_{l_{0}} & =r_{l-11}
\end{aligned}
$$

with the $\frac{l+1}{2} \times \frac{l+1}{2}$-matrix

$$
\mathcal{M}_{1}(l)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-(l-1) & 3 & 0 & 0 & \cdots & 0 & 0 \\
0 & -(l-3) & 5 & 0 & \cdots & 0 & 0 \\
& & \vdots & & & \\
0 & 0 & 0 & 0 & & -2 & l
\end{array}\right)=\left(a_{i k}\right) .
$$

Thus $\mathcal{M}_{1}(l)$ has nonvanishing elements only in the diagonal and the subdiagonal. If $M_{i k}$ originates from $\mathcal{M}_{1}(l)$ by cancelling the i-th row and the k-th column we prove now that $\operatorname{det} M_{i k}=0$ for $i \geq k+1$. Thus ($\operatorname{det} M_{i k}$) is upper triangular. To see this, let $n=\frac{l+1}{2}$. Then

$$
\operatorname{det} M_{i k} \sum_{\substack{1 \leq \nu_{1}, \nu_{2}, \ldots, \nu_{i-1}, \nu_{i+1}, \ldots, \nu_{n} \leq n \\\left(\nu_{1}, \ldots, \nu_{i-1}, \nu_{i+1}, \ldots, \nu_{n}\right) \text { is a } \\ \text { permutation of }(1, \ldots, k-1, k+1, \ldots, n)}} \pm a_{1 \nu_{1}} \ldots a_{i_{1} \nu_{i-1}} a_{i+1 \nu_{i+1} \ldots a_{n \nu_{n}} .}
$$

Let us assume that $\nu_{j} \leq j, 1 \leq j \leq i-1, i-1 \geq k$ for some member of the last sum. The $\nu_{1}, \ldots, \nu_{i-1}$ are pairwise distinct. Therefore $\nu_{1}=1, \nu_{2}=$ $2, \ldots, \nu_{i-1}=i-1$, and in particular $\nu_{k}=k$, which is a contradiction. Consequently there exists a j with $1 \leq j \leq i-1$ and $j<\nu_{j}$. But then $a_{j \nu_{j}}=0$. Observe that we have used only that $\left(a_{i k}\right)$ is lower triangular. A subexample may be in order. Take

$$
\left(a_{i k}\right)=\left(\begin{array}{ccc}
a & 0 & 0 \\
\alpha & b & 0 \\
\delta & \beta & c
\end{array}\right)
$$

then $\operatorname{det} M_{21}=0$, $\operatorname{det} M_{31}=0$, $\operatorname{det} M_{32}=0$. As for $M_{i k}$ let us for instance assume that $k>i$, i. e. $k-1 \geq i$. We thus cancel the i-th row and the k-th column. This corresponds to the element $a_{i k}$ in $\mathcal{M}_{1}(l)=\left(a_{p q}\right)_{1 \leq p, q \leq n=(l+1) / 2}$. Moreover we have with respect to the norm $\|\mathfrak{x}\|=\sum_{k=1}^{m}\left|x_{k}\right|$ in \mathbb{R}^{m} for a linear mapping $B=\left(b_{q p}\right)_{1 \leq p, q \leq m}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ the inequality

$$
\|B\| \leq \max _{1 \leq q \leq m} \sum_{p=1}^{m}\left|b_{p q}\right|
$$

In what follows we still employ these norms. Considering the last tow points we first have

$M_{i k}={ }^{\text {i }}$	$\begin{aligned} & a_{11} \\ & a_{21} \\ & 0 \\ & \quad a_{i-1 i-2} \\ & \hline \end{aligned}$	$\begin{aligned} & I^{\prime} \\ & \begin{array}{l} 0 \\ = \\ \text { lower triangular } \\ a_{i-1 i-1} \\ \hline \end{array} \\ & \end{aligned}$	0			0		
	0		$a_{i+1 i}$ 0	$a_{i+1 i+1}$	$\begin{aligned} & I I^{\prime} \\ & =\text { upper triangular } \\ & 0 \\ & a_{k-1 k-1} \\ & a_{k k-1} \\ & \hline \end{aligned}$	0		
	0					$\begin{aligned} & a_{k+1}+1 k+1 \\ & a_{k+2 k+1} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & a_{n n-1} a_{n n} \end{aligned}$	$\begin{aligned} & I I= \\ & \text { lower triangular } \end{aligned}$

Employing Laplace's Theorem we obtain
$\operatorname{det} M_{i k}=\operatorname{det} I^{\prime} \cdot \operatorname{det} I^{\prime \prime} \cdot \operatorname{det} I I$ where

$$
I^{\prime} \text { is an }(i-1) \times(i-1) \text {-matrix }
$$

$$
I^{\prime \prime} \text { is a }(k-i) \times(k-i) \text {-matrix }
$$

$$
I I \text { is a }(n-k) \times(n-k) \text {-matrix, }
$$

$\operatorname{det} I^{\prime}=1 \cdot \ldots \cdot[2(i-1)-1]$ with odd factors
$\operatorname{det} I^{\prime \prime}=(l-(2 i-1)) \cdot \ldots \cdot(l-(2(k-1)-1))(-1)^{k-i}$ with even factors $\operatorname{det} I I=(2(k+1)-1) \cdot \ldots l$ with odd factors

Thus

$$
\left|\operatorname{det} M_{i k}\right| \leq l^{\frac{l+1}{2}-1}
$$

It is easily seen now that this estimate is correct also for $k \leq i$. Set $\mathfrak{p}=\left(p_{1 l-1}, p_{3 l-3}, \ldots, p_{l 0}\right)^{T} \in \mathbb{R}^{(l+1) / 2} . \mathcal{M}_{1}(l)$ defines an isomorphism from $\mathbb{R}^{(l+1) / 2}$ onto itself which is also denoted by $\mathcal{M}_{1}(l)$. With $\mathfrak{r}=\left(r_{0 l}, r_{2 l-2}, \ldots, r_{l-11}\right)^{T}$ $\in \mathbb{R}^{(l+1) / 2}$ we obtain

$$
\begin{gathered}
\mathfrak{p}=\mathcal{M}_{1}^{-1}(l) \mathfrak{r} \\
\|\mathfrak{p}\|_{(l+1) / 2} \leq\left\|\mathcal{M}_{1}^{-1}(l) \mid\right\|\|\mathfrak{r}\|_{(l+1) / 2}, \\
\mathcal{M}_{1}^{-1}(l)= \\
\frac{1}{\operatorname{det} \mathcal{M}_{1}(l)}\left(\begin{array}{c}
\operatorname{det} M_{11} \\
(-1) \operatorname{det} M_{12} \\
\operatorname{det} M_{13} \\
\vdots
\end{array} \operatorname{det} M_{22}\right. \\
=\frac{1}{1 \cdot 3 \cdot \ldots \cdot l}\left((-1)^{i+k} \operatorname{det} M_{i k}\right)^{T}
\end{gathered}
$$

Thus we secondly have

$$
\left\|\mathcal{M}_{1}^{-1}(l)\right\| \leq \frac{1}{1 \cdot 3 \cdot \ldots \cdot l} \frac{l+1}{2} l^{l+1}-1 .
$$

According to the proof of Proposition 1 we have as second linear system

$$
\begin{gathered}
-l p_{0 l}+2 p_{2 l-2}+0+0+\ldots+0+0+0=r_{1 l-1} \\
0-(l-2) p_{2 l-2}+4 p_{4 l-4}+0+\ldots+0+0+0=r_{3 l-3} \\
\vdots \\
0+\ldots+0-3 p_{l-33}+(l-1) p_{l-11}=r_{l-22} \\
0+\ldots+0+0-p_{l-11}=r_{l 0}
\end{gathered}
$$

with the $(l+1) / 2 \times(l+1) / 2$ matrix

$$
\mathcal{M}_{2}(l)=\left(\begin{array}{ccccccc}
-l & 2 & 0 & 0 & \ldots & 0 & 0 \\
0 & -(l-2) & 4 & 0 & \ldots & 0 & 0 \\
& & & \vdots & & & \\
& 0 & & 0 & \ldots & -3 & l-1 \\
& & & 0 & & 0 & -1
\end{array}\right)
$$

As before we arrive at

$$
\left\|\mathcal{M}_{2}^{-1}(l)\right\| \leq \frac{1}{1 \cdot 3 \cdot \ldots \cdot l} \frac{l+1}{2} l^{l+1} \frac{l+1}{2}
$$

Now let l be even. Since the calculations for the inverses of the matrices in $(4,6)$ are very much the same as for $\mathcal{M}_{1}^{-1}(l)$ only a brief discussion is necessary. We assume that the compatibility condition (3) holds. As for (6) we set $p_{0 \lambda}=0$.

Then we have in (4) the $l / 2 \times l / 2$-matrix

$$
\mathcal{M}_{3}(l)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-(l-1) & 3 & 0 & \ldots & 0 & 0 \\
0 & & & & & 0 \\
0 & 0 & 0 & \ldots & -3 & l-1
\end{array}\right)
$$

with

$$
\left\|\mathcal{M}_{3}^{-1}(l)\right\| \leq \frac{1}{1 \cdot 3 \cdot \ldots \cdot(l-1)} \frac{l}{2} l^{\frac{1}{2}-1} .
$$

As for (6) we obtain the $l / 2 \times l / 2$-matrix

$$
\mathcal{M}_{4}(l)=\left(\begin{array}{cccccc}
2 & 0 & 0 & \ldots & 0 & 0 \\
-(l-2) & 4 & 0 & \ldots & 0 & 0 \\
0 & -(l-4) & 6 & \ldots & 0 & 0 \\
& 0 & & & & 0 \\
0 & 0 & 0 & \ldots & -2 & l
\end{array}\right)
$$

with

$$
\left\|\mathcal{M}_{4}^{-1}(l)\right\| \leq \frac{1}{2 \cdot 4 \cdot \ldots \cdot l} \frac{1}{2} l^{\frac{L}{2}-1}
$$

We conclude with
Theorem 4: Let $\rho>0$,

$$
R=\sum_{\nu+\mu \geq 1} r_{\nu \mu} x^{\nu} y^{\mu}
$$

be a convergent power series in $|x|<\rho,|y|<\rho$. The coefficients $r_{\nu \mu} \in \mathbb{R}$ are supposed to satisfy the compatibility condition (3) if $\nu+\mu=l$ is even.

Then the partial differential equation

$$
y p_{x}-x p_{y}=R
$$

has a formal solution

$$
\begin{aligned}
p & =\sum_{\nu+\mu \geq 1} p_{\nu \mu} x^{\nu} y^{\mu} \\
& =\sum_{l=1}^{\infty} \sum_{\substack{\nu+\mu=l \\
\nu \geq \text { lif oven }}} p_{\nu \mu} x^{\nu} y^{\mu}+\sum_{l=2, l \text { even }}^{\infty}\left(p_{0 l}=\lambda_{l}\right) y^{l}
\end{aligned}
$$

for any values $\lambda_{2}, \lambda_{4}, \ldots$. The series for p is convergent in $|x|<\frac{\rho}{\sqrt{e}},|y|<\frac{\rho}{\sqrt{e}}$ if the $\lambda_{2}, \lambda_{4}, \ldots$ are chosen in such a way that $\lambda_{2} y^{2}+\lambda_{4} y^{4}+\ldots$ converges in $|y|<\frac{\rho}{\sqrt{e}}$.

Proof: In what follows $\widetilde{\nu}$ is a multiindex of \mathbb{R}^{2}. With $\mathfrak{x}=(x, y)^{T}, p=$ $p(\tilde{\mathfrak{x}})=\sum_{|\tilde{\nu}| \geq 1} p_{\tilde{\nu}} \tilde{x^{v}}, R=R(\widetilde{\mathfrak{x}})=\sum_{|\widetilde{\nu}|} r_{\tilde{\nu} \mathfrak{x}^{\tilde{\nu}}}$ we obtain

$$
\begin{aligned}
& \sum_{|\tilde{\nu}|=l}\left|p_{\tilde{\nu}}\right| \leq \frac{l+1}{2} \frac{l^{\frac{l+1}{2}-1}}{1 \cdot 3 \cdot \ldots \cdot l} \sum_{|\tilde{\nu}|=l}\left|r_{\tilde{\nu}}\right|, l \text { odd }, \\
& \sum_{\substack{\mid \tilde{\nu} \neq l \\
\tilde{\nu}(0, l)}}\left|p_{\tilde{\nu}}\right| \leq \frac{l}{2} \max \left(\frac{l^{\frac{l}{2}-1}}{1 \cdot 3 \cdot \ldots \cdot(l-1)}, \frac{l^{\frac{l}{2}-1}}{2 \cdot 4 \cdot \ldots \cdot l}\right) \sum_{\substack{\mid \tilde{\nu} \neq l \\
\bar{\nu} \neq 0, l)}}\left|r_{\tilde{\nu}}\right|, l \text { even. }
\end{aligned}
$$

For l odd we have

$$
\begin{aligned}
l! & =1 \cdot 3 \cdot \ldots \cdot l \cdot 2 \cdot 4 \cdot \ldots \cdot(l-1), \\
& \leq(1 \cdot 3 \cdot \ldots \cdot l)^{2},
\end{aligned}
$$

and for l even

$$
\begin{aligned}
l! & =1 \cdot 3 \cdot \ldots \cdot(l-1) \cdot 2 \cdot 4 \cdot \ldots \cdot l, \\
& \leq(2 \cdot 4 \cdot \ldots \cdot l)^{2},
\end{aligned}
$$

$$
l(l-1) \cdot \ldots \cdot 3 \cdot 1 \geq l(l-2) \cdot \ldots \cdot 2
$$

Stirling's forumula now shows

$$
\sum_{\substack{\bar{\nu} \mid=l \\ \text { fol } \neq l \mid l \\ \text { for } l \text { even }}}\left|p_{\widetilde{\nu}}\right| \leq c \sqrt{l} e^{\frac{l}{2}} \sum_{|\widetilde{\nu}|=l}\left|r_{\widetilde{\nu}}\right|,
$$

c being a constant which does not depend on l. This estimate completes the proof.

References

[1] Frommer, M.: Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen., Math. Ann. 109, 395-424 (1934)
[2] Wahl, W. von: Generation of Centres by Adding Higher Order Terms in $y^{\prime}=-\frac{x^{2 n-1}+P(x, y)}{y^{2 n-1}+Q(x, y)}$. Preprint.
www.uni-bayreuth.de/departments/math/org/mathe6/publ/wvwpublic.html.

