On the differential equation $yp_x - xp_y = R$ for real analytic functions with unknown pWolf von Wahl. Universität Bayreuth, Department of Mathematics, D-95440 Bayreuth, Germany 16.03.2007

Synopsis The differential equation $yp_x - xp_y = R$ is investigated. We are looking for solutions being analytic in a neighborhood of the origin.

I. Introduction

When studying Poincaré's centre problem

$$y' = -\frac{x+P}{y+Q} = -\frac{\mathcal{A}(x,y)}{\mathcal{B}(x,y)}$$

around (0,0) a major rôle is played by the differential equation

(1)
$$yp_x - xp_y = R$$

with given right hand side R. It serves to construct recursively a formal power series p with

(A)
$$\det \begin{pmatrix} p_x & p_y \\ & \\ \mathcal{A} & \mathcal{B} \end{pmatrix} = \sum_{j=1}^{\infty} d_j (x^{2j+2} + y^{2j+2}).$$

In the present paper we derive necessary and sufficient conditions on R under which (1) has as solution a formal power series around (0,0). Then convergence is studied.

II. Recursion

Let $R = r_1 + r_2 + ...$ be a formal power series around (0, 0) with homogeneous parts r_i of degree *i*. For *p* we use the ansatz $p = p_1 + p_2 + ...$ with homogeneous parts of degree *i* again. The equation in question is solved for each degree *l* separately. This means we solve

$$yp_{lx} - xp_{ly} = r_l, \ l \ge 1.$$

For convenience we write occasionally p, r instead of p_l, r_l . Let

$$p = \sum_{\nu+\mu=l} p_{\nu\mu} x^{\nu} y^{\mu},$$
$$r = \sum_{\nu+\mu=l} r_{\nu\mu} x^{\nu} y^{\mu}.$$

Then

$$p_{x} = \sum_{\nu+\mu=l} \nu p_{\nu\mu} x^{\nu-1} y^{\mu} = \sum_{\nu+\mu=l-1} (\nu+1) p_{\nu+1\mu} x^{\nu} y^{\mu},$$

$$yp_{x} = \sum_{\nu+\mu=l-1} (\nu+1) p_{\nu+1\mu} x^{\nu} y^{\mu+1} = \sum_{\nu+\mu=l} (\nu+1) p_{\nu+1\mu-1} x^{\nu} y^{\mu},$$

$$p_{y} = \sum_{\nu+\mu=l} \mu p_{\nu\mu} x^{\nu} y^{\mu-1} = \sum_{\nu+\mu=l-1} (\mu+1) p_{\nu\mu+1} x^{\nu} y^{\mu},$$

$$xp_{y} = \sum_{\nu+\mu=l} (\mu+1) p_{\nu-1\mu+1} x^{\nu} y^{\mu}.$$

For the coefficients of p, r we thus obtain

(2)
$$(\nu+1)p_{\nu+1\mu-1} - (\mu+1)p_{\nu-1\mu+1} = r_{\nu\mu}, \ \nu+\mu=l.$$

Proposition 1: Let $\nu + \mu = l$ be odd. Then (2) has a unique solution $p_{0l}, p_{1l-1}, \ldots, p_{l0}$.

Proof: (2) reads as follows.

$$\begin{aligned} 1 \cdot p_{1l-1} &= r_{0l}, \\ 2 \cdot p_{2l-2} - l \cdot p_{0l} &= r_{1l-1}, \\ 3 \cdot p_{3l-3} - (l-1)p_{1l-1} &= r_{2l-2}, \\ &\vdots \\ l \cdot p_{l0} - 2p_{l-22} &= r_{l-11}, \\ -p_{l-11} &= r_{l0}. \end{aligned}$$

First we consider $p_{\nu+1\mu-1}$, $p_{\nu-1\mu+1}$ with $\nu+1, \nu-1$ odd. Then we can solve

$$1 \cdot p_{1l-1} = r_{0l},$$

$$3 \cdot p_{3l-3} - (l-1)p_{1l-1} = r_{2l-2},$$

$$5 \cdot p_{5l-3} - (l-3)p_{3l-3} = r_{4l-4},$$

$$\vdots$$

$$l \cdot p_{l0} - 2p_{l-22} = r_{l-11}$$

succesively and see that the $p_{\lambda\mu}$ with λ odd are determined uniquely. As for $\nu + 1, \nu - 1$ even we obtain

$$2p_{2l-2} - lp_{0l} = r_{1l-1},$$

$$4p_{4l-4} - (l-2)p_{2l-2} = r_{3l-3},$$

$$\vdots$$

$$(l-1)p_{l-11} - 3p_{l-33} = r_{l-22},$$

$$-p_{l-11} = r_{l0}.$$

Starting backward with p_{l-11} we arrive at the uniquely determined $p_{\lambda\mu}$ with even λ .

If l is even the situation is more complicated.

Proposition 2: Let $\nu + \mu = l$ be even. Then (2) has a solution if and only if a compatibility condition holds. This is

(3)
$$\sum_{i=0}^{l/2} a_{2i}^{(l)} r_{2il-2i} = 0 \quad for \ l \ even$$

with certain uniquely determined coprime positive integers $a_0^{(l)}, a_2^{(l)}, \cdots, a_l^{(l)}$.

Proof: Let $\nu + 1, \nu - 1$ be odd. We obtain

(4)
$$\begin{cases} 1 \cdot p_{1l-1} = r_{0l}, \\ 3 \cdot p_{3l-3} - (l-1)p_{1l-1} = r_{2l-2}, \\ \vdots \\ (l-1)p_{l-11} - 3p_{l-33} = r_{l-22}, \end{cases}$$

(5) $-p_{l-11} = r_{l0}$. (4) determines $p_{1l-1}, \ldots, p_{l-11}$ uniquely. To fulfill (5) we need

$$3p_{3l-3} = (l-1)p_{1l-1} + r_{2l-2},$$

= $(l-1)r_{0l} + r_{2l-2}.$

Now

$$5p_{5l-5} = (l-3)p_{3l-3} + r_{4l-4}$$

If we insert for p_{3l-3} and continue this way we arrive at

$$(l-1)p_{l-11} = \sum_{i=1}^{(l-2)/2} q_{2i}^{(l)} r_{2il-2}$$

with positive rational numbers $q_{2i}^{(l)}$. Employing (5) yields the assertion (3). If $\nu + 1, \nu - 1$ are even we obtain

(6)
$$\begin{cases} 2p_{2l-2} - lp_{0l} = r_{1l-1} \\ 4p_{4l-4} - (l-2)p_{2l-2} = r_{3l-3} \\ \vdots \\ lp_{l0} - 2p_{l-22} = r_{l-11} \end{cases}$$

(6) is underdetermined and has infinitely many solutions which can be parametrized with respect to $\lambda_l = p_{0l}$.

We arrive now at

Theorem 3:

 $1. \quad Let$

$$R = \sum_{\nu+\mu \ge 1} r_{\nu\mu} x^{\nu} y^{\mu}$$

be a formal power series. Then there is a formal power series

(7)
$$p = \sum_{\nu+\mu \ge 1} p_{\nu\mu} x^{\nu} y^{\mu}$$

 $such\ that$

provided (3) is satisfied. If conversely (8) is satisfied for a formal power series (7) then (3) holds.

2. Let p be a formal power series as in 1. In particular (8) is satisfied. If $\mathfrak{x} = (x, y)^T$ and

$$i_0 = \min\{i | r_i \neq 0\} \ge 2$$

then we may have $p = 0(|\mathfrak{x}|^{i_0})$ formally, this is: p starts with r_{i_0} only.

Proof: The first part follows from Propositions 1 and 2 and the necessity of (4,5). As for the second part we remark that

$$r_{\nu\mu} = 0 \text{ for } \nu + \mu \le i_0 - 1.$$

Thus we can set $p_{\nu\mu} = 0, \ \nu + \mu \le i_0 - 1.$

Some examples may in order now.

Example 1. We consider the question if in

$$y' = -\frac{x + 4x^2y + y^3}{y - 2x^3 + xy^2}$$

the origin can be made a center by adding higher order polynomials in the numerator and the denominator. This is example 3 in [1, p. 406]. Moreover it is shown in [1] that $d_1 = 0$, $d_2 \neq 0$ in the expansion (A). In fact we prove in [2] that our question can be answered positively if

$$yp_x - xp_y = R = P_y - Q_x$$
 with
 $P = 4x^2y + y^3$
 $Q = 2x^3 + xy^2$

is solvable in the sense of Theorem 3. Since degree $(P_y - Q_x) = 2$ is even we have to employ (3). Since (4,5) read

$$p_{11} = r_{02},$$

 $-p_{11} = r_{20},$

this is

$$r_{02} + r_{20} = 0$$

and since

$$R = P_y - Q_x = 4x^2 + 3y^2 - bx^2 - y^2 = -2x^2 + 2y^2$$

thus satisfies (3), the present example can be subsumed under Theorem 3.

Example 2. Let R be a homogeneous polynomial of degree 4. Then (4,5) read

$$p_{13} = r_{04},$$

$$3p_{31} - 3p_{13} = r_{22},$$

$$-p_{31} = r_{40}.$$

The necessary and sufficient condition for the solvability of this system is

$$3r_{04} + r_{22} + 3r_{40} = 0,$$

this is

$$\sum_{i=0}^{2} a_{2i}^{(4)} r_{2il-2i} = 0 \text{ with}$$
$$a_{0}^{(4)} = 3, \ a_{2}^{(4)} = 1, a_{4}^{(4)} = 3.$$

III. Convergence

In this section we are going to show that convergence of the power series R implies convergence of the power series p provided (3) is satisfied.

Let l be odd. According to the proof of Proposition 1 the first system we have to solve is

$$p_{1l-1} + 0 + 0 + 0 + \dots + 0 + 0 = r_{0l}$$

-(l-1)p_{1l-1} + 3p_{3l-3} + 0 + 0 + \dots + 0 + 0 = r_{2l-2}
0 - (l-3)p_{3l-3} + 5p_{5l-5} + 0 + \dots + 0 + 0 = r_{4l-4}
:
0 + 0 + 0 + 0 + \dots - 2p_{l-22} + lp_{l_0} = r_{l-11}

with the $\frac{l+1}{2} \times \frac{l+1}{2}$ -matrix

$$\mathcal{M}_{1}(l) = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ -(l-1) & 3 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -(l-3) & 5 & 0 & \cdots & 0 & 0 \\ & & \vdots & & & \\ 0 & 0 & 0 & 0 & -2 & l \end{pmatrix} = (a_{ik}).$$

Thus $\mathcal{M}_1(l)$ has nonvanishing elements only in the diagonal and the subdiagonal. If M_{ik} originates from $\mathcal{M}_1(l)$ by cancelling the *i*-th row and the *k*-th column we prove now that det $M_{ik} = 0$ for $i \ge k + 1$. Thus $(\det M_{ik})$ is upper triangular. To see this, let $n = \frac{l+1}{2}$. Then

$$\det M_{ik} = \sum_{\substack{1 \le \nu_1, \nu_2, \dots, \nu_{i-1}, \nu_{i+1}, \dots, \nu_n \le n \\ (\nu_1, \dots, \nu_{i-1}, \nu_{i+1}, \dots, \nu_n) \text{ is a} \\ \text{permutation of } (1, \dots, k-1, k+1, \dots, n)}} \pm a_{1\nu_1} \dots a_{i_1\nu_{i-1}} a_{i+1\nu_{i+1}} \dots a_{n\nu_n}$$

Let us assume that $\nu_j \leq j$, $1 \leq j \leq i-1$, $i-1 \geq k$ for some member of the last sum. The ν_1, \ldots, ν_{i-1} are pairwise distinct. Therefore $\nu_1 = 1, \nu_2 = 2, \ldots, \nu_{i-1} = i-1$, and in particular $\nu_k = k$, which is a contradiction. Consequently there exists a j with $1 \leq j \leq i-1$ and $j < \nu_j$. But then $a_{j\nu_j} = 0$. Observe that we have used only that (a_{ik}) is lower triangular. A subexample may be in order. Take

$$(a_{ik}) = \begin{pmatrix} a & 0 & 0 \\ \alpha & b & 0 \\ \delta & \beta & c \end{pmatrix},$$

then det $M_{21} = 0$, det $M_{31} = 0$, det $M_{32} = 0$. As for M_{ik} let us for instance assume that k > i, i. e. $k - 1 \ge i$. We thus cancel the *i*-th row and the *k*-th column. This corresponds to the element a_{ik} in $\mathcal{M}_1(l) = (a_{pq})_{1 \le p,q \le n = (l+1)/2}$. Moreover we have with respect to the norm $||\mathfrak{x}|| = \sum_{k=1}^m |x_k|$ in \mathbb{R}^m for a linear mapping $B = (b_{qp})_{1 \le p,q \le m} : \mathbb{R}^m \to \mathbb{R}^m$ the inequality

$$||B|| \le \max_{1 \le q \le m} \sum_{p=1}^{m} |b_{pq}|.$$

In what follows we still employ these norms. Considering the last tow points we *first* have

Employing Laplace's Theorem we obtain

det
$$M_{ik}$$
 = det $I' \cdot \det I'' \cdot \det II$ where
 I' is an $(i-1) \times (i-1)$ -matrix
 I'' is a $(k-i) \times (k-i)$ -matrix,
 II is a $(n-k) \times (n-k)$ -matrix,
det I' = $1 \cdot \ldots \cdot [2(i-1)-1]$ with odd factors
det I'' = $(l - (2i - 1)) \cdot \ldots \cdot (l - (2(k - 1) - 1))(-1)^{k-i}$ with even factors
det II = $(2(k+1)-1) \cdot \ldots l$ with odd factors

Thus

$$|\det M_{ik}| \le l^{\frac{l+1}{2}-1}.$$

It is easily seen now that this estimate is correct also for $k \leq i$. Set $\mathbf{p} = (p_{1l-1}, p_{3l-3}, \dots, p_{l0})^T \in \mathbb{R}^{(l+1)/2}$. $\mathcal{M}_1(l)$ defines an isomorphism from $\mathbb{R}^{(l+1)/2}$ onto itself which is also denoted by $\mathcal{M}_1(l)$. With $\mathbf{r} = (r_{0l}, r_{2l-2}, \dots, r_{l-11})^T$ $\in \mathbb{R}^{(l+1)/2}$ we obtain $\mathfrak{p}=\mathcal{M}_1^{-1}(l)\mathfrak{r}$

$$||\mathbf{p}||_{(l+1)/2} \le ||\mathcal{M}_1^{-1}(l)|||\mathbf{r}||_{(l+1)/2},$$

$$\mathcal{M}_{1}^{-1}(l) = \frac{1}{\det \mathcal{M}_{1}(l)} \begin{pmatrix} \det M_{11} & & & \\ & & 0 \\ (-1) \det M_{12} & \det M_{22} \\ & \det M_{13} & \ddots \\ & \vdots & & \det M_{\frac{l+1}{2}\frac{l+1}{2}} \end{pmatrix}$$
$$= \frac{1}{1 \cdot 3 \cdot \ldots \cdot l} ((-1)^{i+k} \det M_{ik})^{T}$$

Thus we **secondly** have

$$||\mathcal{M}_1^{-1}(l)|| \le \frac{1}{1\cdot 3\cdot \ldots \cdot l} \frac{l+1}{2} l^{\frac{l+1}{2}-1}$$

According to the proof of Proposition 1 we have as second linear system

$$-lp_{0l} + 2p_{2l-2} + 0 + 0 + \ldots + 0 + 0 + 0 = r_{1l-1}$$
$$0 - (l-2)p_{2l-2} + 4p_{4l-4} + 0 + \ldots + 0 + 0 + 0 = r_{3l-3}$$
$$\vdots$$

$$0 + \ldots + 0 - 3p_{l-33} + (l-1)p_{l-11} = r_{l-22}$$

$$0 + \ldots + 0 + 0 - p_{l-11} = r_{l0}$$

with the $(l+1)/2 \times (l+1)/2$ matrix

$$\mathcal{M}_2(l) = \begin{pmatrix} -l & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & -(l-2) & 4 & 0 & \dots & 0 & 0 \\ & & \vdots & & & \\ 0 & 0 & \dots & -3 & l-1 \\ & & 0 & 0 & -1 \end{pmatrix}$$

As before we arrive at

$$||\mathcal{M}_2^{-1}(l)|| \le \frac{1}{1\cdot 3\cdot \ldots \cdot l} \frac{l+1}{2} l^{\frac{l+1}{2}-1}$$

Now let l be even. Since the calculations for the inverses of the matrices in (4,6) are very much the same as for $\mathcal{M}_1^{-1}(l)$ only a brief discussion is necessary. We assume that the compatibility condition (3) holds. As for (6) we set $p_{0\lambda} = 0$.

Then we have in (4) the $l/2 \times l/2$ -matrix

$$\mathcal{M}_{3}(l) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -(l-1) & 3 & 0 & \dots & 0 & 0 \\ 0 & & & & 0 \\ 0 & 0 & 0 & \dots & -3 & l-1 \end{pmatrix}$$

with

$$||\mathcal{M}_{3}^{-1}(l)|| \leq \frac{1}{1\cdot 3\cdot \ldots \cdot (l-1)} \frac{l}{2} l^{\frac{1}{2}-1}.$$

As for (6) we obtain the $l/2 \times l/2$ -matrix

$$\mathcal{M}_4(l) = \begin{pmatrix} 2 & 0 & 0 & \dots & 0 & 0 \\ -(l-2) & 4 & 0 & \dots & 0 & 0 \\ 0 & -(l-4) & 6 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & -2 & l \end{pmatrix}$$

with

$$||\mathcal{M}_4^{-1}(l)|| \le \frac{1}{2 \cdot 4 \cdot \ldots \cdot l} \frac{1}{2} l^{\frac{1}{2}-1}$$

We conclude with

Theorem 4: Let $\rho > 0$,

$$R = \sum_{\nu+\mu \ge 1} r_{\nu\mu} x^{\nu} y^{\mu}$$

be a convergent power series in $|x| < \rho, |y| < \rho$. The coefficients $r_{\nu\mu} \in \mathbb{R}$ are supposed to satisfy the compatibility condition (3) if $\nu + \mu = l$ is even.

Then the partial differential equation

$$yp_x - xp_y = R$$

has a formal solution

$$p = \sum_{\nu+\mu \ge 1} p_{\nu\mu} x^{\nu} y^{\mu}$$

=
$$\sum_{l=1}^{\infty} \sum_{\nu+\mu=l, \atop \nu \ge \ln l \text{ f } l \text{ even}} p_{\nu\mu} x^{\nu} y^{\mu} + \sum_{l=2,l \text{ even}}^{\infty} (p_{0l} = \lambda_l) y^l$$

for any values $\lambda_2, \lambda_4, \ldots$ The series for p is convergent in $|x| < \frac{\rho}{\sqrt{e}}, |y| < \frac{\rho}{\sqrt{e}}$ if the $\lambda_2, \lambda_4, \ldots$ are chosen in such a way that $\lambda_2 y^2 + \lambda_4 y^4 + \ldots$ converges in $|y| < \frac{\rho}{\sqrt{e}}$.

Proof: In what follows $\tilde{\nu}$ is a multiindex of \mathbb{R}^2 . With $\mathfrak{x} = (x, y)^T$, $p = p(\tilde{\mathfrak{x}}) = \sum_{|\tilde{\nu}| \ge 1} p_{\tilde{\nu}} \mathfrak{x}^{\tilde{\nu}}$, $R = R(\tilde{\mathfrak{x}}) = \sum_{|\tilde{\nu}|} r_{\tilde{\nu}} \mathfrak{x}^{\tilde{\nu}}$ we obtain

$$\sum_{\substack{|\widetilde{\nu}|=l\\\widetilde{\nu}\neq(0,l)}} |p_{\widetilde{\nu}}| \leq \frac{l+1}{2} \frac{l^{\frac{l+1}{2}-1}}{1\cdot 3\cdot \ldots \cdot l} \sum_{\substack{|\widetilde{\nu}|=l\\|\widetilde{\nu}|=l}} |r_{\widetilde{\nu}}|, \ l \text{ odd},$$
$$\sum_{\substack{|\widetilde{\nu}|=l\\\widetilde{\nu}\neq(0,l)}} |p_{\widetilde{\nu}}| \leq \frac{l}{2} \max\left(\frac{l^{\frac{l}{2}-1}}{1\cdot 3\cdot \ldots \cdot (l-1)}, \frac{l^{\frac{l}{2}-1}}{2\cdot 4\cdot \ldots \cdot l}\right) \sum_{\substack{|\widetilde{\nu}|=l\\\widetilde{\nu}\neq(0,l)}} |r_{\widetilde{\nu}}|, l \text{ even}.$$

For l odd we have

$$l! = 1 \cdot 3 \cdot \ldots \cdot l \cdot 2 \cdot 4 \cdot \ldots \cdot (l-1),$$
$$\leq (1 \cdot 3 \cdot \ldots \cdot l)^2,$$

and for l even

$$l! = 1 \cdot 3 \cdot \ldots \cdot (l-1) \cdot 2 \cdot 4 \cdot \ldots \cdot l,$$

$$\leq (2 \cdot 4 \cdot \ldots \cdot l)^2,$$

$$l(l-1)\cdot\ldots\cdot 3\cdot 1 \ge l(l-2)\cdot\ldots\cdot 2.$$

Stirling's forumula now shows

$$\sum_{\substack{|\widetilde{\nu}|=l\\\widetilde{\nu}\neq(0,l)\\\text{for }l \text{ even}}} |p_{\widetilde{\nu}}| \le c\sqrt{l}e^{\frac{l}{2}}\sum_{|\widetilde{\nu}|=l} |r_{\widetilde{\nu}}|,$$

c being a constant which does not depend on l. This estimate completes the proof.

References

- [1] Frommer, M.: Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen., Math. Ann. 109, 395 424 (1934)
- [2] Wahl, W. von: Generation of Centres by Adding Higher Order Terms in $y' = -\frac{x^{2n-1} + P(x, y)}{y^{2n-1} + Q(x, y)}$. Preprint. www.uni-bayreuth.de/departments/math/org/mathe6/publ/wvwpublic.html.