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Synopsis The differential equation yp, — xp, = R is investigated. We are
looking for solutions being analytic in a neighborhood of the origin.

I. Introduction

When studying Poincaré’s centre problem

) = r+P  Alx,y)

y+Q  Bla,y)

around (0,0) a major role is played by the differential equation
(1) Ype — apy = R

with given right hand side R. It serves to construct recursively a formal
power series p with
Pz Dy 00
(A) det = di(a¥? ),
A B j=1

In the present paper we derive necessary and sufficient conditions on R
under which (1) has as solution a formal power series around (0,0). Then
convergence is studied.

II. Recursion

Let R =11+ 12+ ... be a formal power series around (0,0) with homoge-
neous parts r; of degree i. For p we use the ansatz p = p; + p2 + ... with
homogeneous parts of degree i again. The equation in question is solved
for each degree [ separately. This means we solve



Ypie — TPy =11, 1 > 1.

For convenience we write occasionally p, r instead of p;, r;. Let

p = Z puuajyyﬂv

v4pu=l

r = g T

v+pu=l
Then

Pz = Z prxv—lyu: Z (V—i_l)pwrluxyyua

v+p=l vtp=i—1
ype = Y WA Dpana’y' =Y v+ Dppsnzty,
v+p=Il-1 vtp=l
py = D ey =D (e Dppunayt,
v+p=l vt+p=I—1
wpy = Y (et Dpporuma”y”.
v+pu=l

For the coefficients of p, r we thus obtain

(2) (V + 1)pu+1u—1 - (M + 1)pu—1u+1 = Top, V +u= [.

Proposition 1: Let v+ pu =1 be odd. Then (2) has a unique solution
Doi; P1i—15 - - -5 Pio-

Proof: (2) reads as follows.

1-pu—1 = ro,
2-pyo—1l-py = r1-1,
3 pai—3 — (l - 1)]?11—1 = T9—2,

L-pio—2p1—22 = 71-11,

—Pi-11 = To-

First we consider p,41,-1, py—1,41 With v+ 1,7 —1 odd. Then we can solve



1-pu-1=ro,
3-pyi—3 — ([ — D)py—1 = a2,
5 psi—3 — (l - 3)]931—3 = T4i—4,

L pio— 2pi—22 = 11-11

succesively and see that the p), with A odd are determined uniquely. As
for v+ 1,v — 1 even we obtain

2092 — lpo = ri-1,
Apgi—g — (I — 2)pay—2

r31—3,

(I = Dpi—11 — 3pi—33 = 71-929,
—Pi-11 = To-

Starting backward with p;_1; we arrive at the uniquely determined p),, with
even . O

If [ is even the situation is more complicated.
Proposition 2: Let v+ pu =1 be even. Then (2) has a solution if and
only if a compatibility condition holds. This is

/2
(3) Z agi)’l“ziz_% =0 fO?“ [ even
i=0
with certain uniquely determined coprime positive integers aé”, aél), s al(l).

Proof: Let v+ 1,7 — 1 be odd. We obtain

(
1-pu_1=ro,
3-p3—s — (I — 1)pry—1 = ro—2,

(4) \

\ (I = 1)pi—11 — 3pi—33 = ri—22,

(5) —Pi-11 = T
(4) determines py;_1, ..., p;—11 uniquely. To fulfill (5) we need

3psi—s = (I —1)pu—1+ ra—2,

= (I = 1)1 + ro—s.
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Now

5psi—s = (I — 3)p3i—3 + T41—4

If we insert for ps;_3 and continue this way we arrive at

(1-2)/2
(0= Dpi-11 = Z qé?rzm
i=1

with positive rational numbers qé?

If v+ 1,v— 1 are even we obtain

. Employing (5) yields the assertion (3).

4
2p21-2 — lpor = 1111
Apy—y — (I — 2)pa1—2 = 1313

(6)

| P10 — 2p1—22 = 7111

(6) is underdetermined and has infinitely many solutions which can be
parametrized with respect to A\; = py;. [

We arrive now at

Theorem 3:

1. Let

R= Z Ty Y

v+p>1

be a formal power series. Then there is a formal power series

(7) p = Zy+’u21pl/,uxyy’u
such that
(8) Ypr — Tpy = R

provided (3) is satisfied. If conversely (8) is satisfied for a formal power
series (7) then (3) holds.

2. Let p be a formal power series as in 1. In particular (8) is satisfied. If
r=(z,y)" and
ip = min{i|r; Z 0} > 2
then we may have p = 0(|t|) formally, this is: p starts with r;, only.

Proof: The first part follows from Propositions 1 and 2 and the necessity
of (4,5). As for the second part we remark that



Ty = 0 for v+ p <ig—1.
Thus we can set p,, =0, v+ p <ig— 1. ]

Some examples may in order now.

Example 1. We consider the question if in

x + 42y +y°

y — 223 + xy?

the origin can be made a center by adding higher order polynomials in the
numerator and the denominator. This is example 3 in [1, p. 406]. Moreover
it is shown in [1] that d; = 0, ds # 0 in the expansion (A). In fact we prove
in [2] that our question can be answered positively if

y =-

YPz — TPy — R:Py—Qx with
P = 42’y 4+
Q = 22° + xy?
is solvable in the sense of Theorem 3. Since degree (P, — Q);) = 2 is even
we have to employ (3). Since (4,5) read

P11 = To2,
—P11 = T20,
this is
To2 + 120 = 0,
and since

R:Py—Qx:4x2+392—bx2—y2:—2x2+2y2

thus satisfies (3), the present example can be subsumed under Theorem 3.

Example 2. Let R be a homogeneous polynomial of degree 4. Then (4,5)
read

P13 = To4,
3ps1 — 3p13 = To2,
—P31 = T40.
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The necessary and sufficient condition for the solvability of this system is

314 + 122 + 3ra0 = 0,
this is

o)

i T2il—2i = 0 with

2
1=0

a(()4) =3, agl) = 1,a(4> = 3.



III. Convergence

In this section we are going to show that convergence of the power series
R implies convergence of the power series p provided (3) is satisfied.

Let [ be odd. According to the proof of Proposition 1 the first system we
have to solve is

pu-1+0+04+04+...+40+0 = ry
—(l=Dpu-1+3ps3+0+0+...404+0 = ry_
0—(I=3)p3—3+5psi5+0+...+0+0 = 144

O+0+O+O+...—2plf22+lpgo = 1_11

with the l+71 X le71—111&’51"1}(

( 1 0 00 -+ 0 0\
—(1-1) 3 00-- 00
Mi(l) = 0 —(=3)50 - 0 0]=/(an)
\ 0 0 00 -21)

Thus M;(l) has nonvanishing elements only in the diagonal and the sub-
diagonal. If M;; originates from M (l) by cancelling the i-th row and the
k-th column we prove now that det M;;, = 0 for i > k + 1. Thus (det M)
is upper triangular. To see this, let n = l+71 Then

det Mzk = E j:alyl e @iy Qi ly g - - - Ay, -
1SI/1,ll2,...,Vi_17V7;+1,...,l/n <n
(V1,0 Vic1,Vigl, .-, Vn) IS &

permutation of (1,..., k—1,k+1,..., n)

Let us assume that v; < 75,1 <35 <i—1,%—1 > k for some member of
the last sum. The v4,...,v;_1 are pairwise distinct. Therefore 1y = 1,15 =
2,...,v;_1 = 1 — 1, and in particular v; = k, which is a contradiction.
Consequently there exists a j with 1 < j < ¢ —1 and j < v;. But then
ajy, = 0. Observe that we have used only that (a;) is lower triangular. A
subexample may be in order. Take



(aik) - Q b 0 )

o B ¢
then det My, = 0, det M3, = 0, det M3, = 0. As for M;;. let us for instance
assume that k£ > 7, i. e. k—1 > 7. We thus cancel the i-th row and the k-th
column. This corresponds to the element a, in My (1) = (ap)1<p.g<n=(1+1)/2-
Moreover we have with respect to the norm [|r|| = > ;. |zx| in R™ for a
linear mapping B = (bg)i<pg<m : R™ — R™ the inequality

1B]| < mZ by

In what follows we still employ these norms. Considering the last tow points
we first have

I/
ajl = lower triangula
0
ag
0 0
0
@i—1i—2  %i—1i—1
M =i /
ik = * @i41i Bitlitl 11
= upper triangular
0 0 0
ag—1k—1
0 Gkk—1
g1kl 0 1 =
0 0 A iokt1 lower triangular
0 Apn—19n:

Employing Laplace’s Theorem we obtain

det M;; = detI’-detI”-detI] where
I'isan (1 — 1) x (i — 1)-matrix
I"is a (k —1) x (k — i)-matrix,
Ilis a (n — k) x (n — k)-matrix,

detI' = 1-...-[2(i — 1) — 1] with odd factors
detI” = (1—(2i—1))-...- (1= (2(k = 1) = 1))(=1)*"" with even factors
det Il = (2(k+1)—1)-...1 with odd factors

Thus

|det M| <1751,

It is easily seen now that this estimate is correct also for &k < 7. Set
p = (pu—1,P31-3,-- i)’ € RUFD/2 M (1) defines an isomorphism from
RFD/2 onto itself which is also denoted by M (1). With v = (ro;, 7a1—2, - . ., 71—11)"
e RUHD/2 we obtain




p=Mi'()r

Ibllany2 < MOl g2

det M1,
1 0
M) = — = | (=1)det My det Moy
() det M (1) det M3
: det M1
1

Thus we secondly have

1 l+1 11
-1 < Bl
M (Z)H—1.3-...-z 7!

According to the proof of Proposition 1 we have as second linear system

—Ilpo+2p9 2o 4+04+0+...+04+0+0 = 74

0—(0—=2)pu—2+4py—s+0+...4+04+0+0 = 733

O + ...+ 0 — 3]?1—33 + (l — 1)pl_11 = T71—-29

O4+...404+0—p11=r10
with the (I 4+ 1)/2 x (I +1)/2 matrix

[~ 2 0O 0 ... 0 0 \
0 —(-2 4 0 ... 0 0
Ms(l) =
0 0 -3 1-1




As before we arrive at

. 1 [+1 1
MG < s
Now let [ be even. Since the calculations for the inverses of the matrices
in (4,6) are very much the same as for M7 '(l) only a brief discussion is
necessary. We assume that the compatibility condition (3) holds. As for

(6) we set pgy = 0.

Then we have in (4) the [/2 x [/2-matrix

[ 1 0 0 0 0 )
—(1-1) 3 0 0 0
Ms(l) =
0 0
\ 0 0 0 -3 -1
with
—1 1 iy
< —]2

M (l>|‘—1-3....-(1—1)2l

As for (6) we obtain the [/2 x [/2-matrix

—(1-2) 4 0 ... 0 0
My(l) = 0 (-4 6 ... 0 0
0 0
\ 0 0 0 ... -2 1)
with
MO < gl

We conclude with

Theorem 4: Let p > 0,
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R = Z Ty Y

v+pu>1
be a convergent power series in |x| < p,|y| < p. The coefficients r,, € R
are supposed to satisfy the compatibility condition (3) if v+ p =1 is even.

Then the partial differential equation

YPzr — TPy = R
has a formal solution

p = Z puuxyyﬂ

V+u>1
_ z S et S (=M
vtu=l, 1=2,l even
v2>1if | even
for any values Ay, Ay, . ... The series for p is convergent in |z| < \/%, ly| < \/%
if the Xa, M\a, . .. are chosen in such a way that Aay®> + \y* + ... converges

in |y <¢%

Proof: In what follows 7 is a multiindex of R?2. With ¢ = (x,9)7, p =
p(r) = g1 P’y R = R(x) = > 5 " we obtain

l 1 llJrl 1
Z|pﬁ| < Z 3 Z]ry [ odd,

[p|=l 1/| l

z (2! 57!
D Ipsl < émax<1-3-...-(5—1)’2-4-...-l> D Irol, 1 even.

For [ odd we have

= 1-3.-...-1-2-4-...-(1-1),

and for [ even

= 1-3-...-(1=1)-2-4-...-1,

INA
—~
[\
N
S~
SN——
Do



(l=1)-...-3-1>1(1=2)-...-2.

Stirling’s forumula now shows

Z ps| < cVies Z 751,

Jpl=t 7| =
£(0,0)
for [ even
¢ being a constant which does not depend on [. This estimate completes
the proof. ]
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