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The study of the Cosserat spectrum started more than 100 years ago with a series of papers
[2]–[10] published between 1898 and 1901 by the French scientists Eugène and François
Cosserat. Their motivation was to expand the solutions of certain basic problems of static
elasticity into eigenvectors. Let BR := {x ∈ Rn : |x| < R} for n ≥ 2. In case n = 3 they
tried to solve the following boundary value problem: If

u0 = (u01, u02, u03) ∈ [
C∞(BR) ∩ C0(B̄R)

]3

satisfying �u0 = 0 in BR is given, find for σ ∈ R a solution of

�u + σ∇ div u = 0 in BR, u |∂BR= u0 |∂BR . (0.1)

They made use of an interesting formula. If f ∈ C∞(BR) is a harmonic homogeneous
polynomial of degree j ∈ N0, then the solution of the Dirichlet problem

�u = f in BR, u |∂BR= 0 (0.2)

is given by

u(x) = 1

2(n + 2 j)

(|x|2 − R2) f(x). (0.3)

If p(k) is a harmonic homogeneous polynomial of degree k ∈ N, then a solution v(k) =
(v

(k)
1 , . . . , v

(k)
n ) ∈ [

C∞(BR) ∩ C0(B̄R)
]n

of the Dirichlet problem

�v(k) = ∇ p(k) in BR, v(k) |∂BR= 0, (0.4)

is given by

v
(k)
i (x) := 1

2(n − 2 + 2k)

(|x|2 − R2)∂i p(k)(x), i = 1, . . . , n. (0.5)

This is an easy consequence of (0.2) and (0.3). One readily calculates for k ≥ 1

div v(k) = k

n − 2 + 2k
p(k)(x)

AMS 1991 subject classification: Primary: 35P99; Secondary: 35J05, 35Q30, 35Q72
Key words and phrases: Cosserat spectrum, Stokes’ system, Lamé’s system
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2 Simader -- von Wahl

and therefore

�v(k) = λk∇ div v(k) in BR with λk = n − 2 + 2k

k
. (0.6)

It seems remarkable that for n = 2 all λk = 2 and that λk > 2, λk → 2 (k → ∞) for
n ≥ 3. The solution of (0.1) is then easily constructed as follows: Let p := div u0. Then
there exist uniquely determined harmonic homogeneous polynomials p(k) such that

p(x) =
∞∑

k=0

p(k)(x) for x ∈ BR,

where the series converges absolutely and uniformly on every compact subset C ⊂ BR

(see e.g. [1, Corollary 5.23, p. 84]). Let v(k) be the solution of (0.4) given by (0.5) such
that (0.6) holds true. Then it is readily seen that if σ 	= −λk for all k ∈ N the solution of
(0.1) is (at least formally) represented by

u(x) = u0(x) −
∞∑

k=1

λkσ

λk + σ
v(k)(x), x ∈ BR. (0.7)

At this point we have to observe that at the year of publication (1898) no other methods
than explicit calculations were available to solve problems like (0.1). E.g. Fredholm’s
method of integral equations was developed later. Clearly the Cosserat brothers tried
to extend their method to more general domains like an ellipsoid or a spherical shell
{x ∈ R3 : 0 < r < |x| < R}. They did so in further papers. More general, if G ⊂ Rn

(n ≥ 2) is a bounded domain, a number λ ∈ R is called a Cosserat eigenvalue if there
exists a non-trivial v = (v1, . . . , vn) ∈ [

C2(G) ∩ C0(Ḡ)
]n

such that

�v = λ∇ div v in G, v |∂G= 0. (0.8)

More than 65 years later this problem was again studied by S. G. Mikhlin, with
completely different methods and for more general domains. He published several papers
between 1966 and 1973 [18], one in 1967 together with V. G. Maz’ya [17]. For a detailed
history of the Cosserat problem we refer to A. Kozhevnikov’s review article [16]. Using the
method of pseudo-differential operators, A. Kozhevnikov investigated in several papers
between 1993 and 2000 [13]–[15] the Cosserat spectrum for the four boundary value
problems of static elasticity theory. A good knowledge of the Cosserat spectrum has a
lot of applications as well in theoretical as in numerical analysis. E.g. W. Velte pointed
out [25]–[27] that the optimal constants in certain inequalities are related to the Cosserat
eigenvalues. As an example from numerical analysis we refer to M. Crouzeix’s paper [11]
concerning Uzawa’s algorithm.

In the subsequent papers a weak Lq-version (1 < q < ∞) of (0.8) is regarded. Let
us briefly describe that procedure in the case of a bounded domain G with boundary
∂G ∈ C2. A vector field v = (v1, . . . , vn) ∈ H1,q

0 (G) := [
H1,q

0 (G)
]n is called a weak

Lq-Cosserat eigenvector to the Cosserat eigenvalue λ ∈ R if v 	= 0 and if

〈∇v,∇φ〉 = λ〈div v, div φ〉 ∀φ ∈ H1,q′
0 (G), q′ := q

q − 1
. (0.9)
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The Cosserat problem 3

Here H1,s
0 (G) denotes the “usual” Sobolev space equipped with norm ‖∇.‖s (1 < s < ∞)

with the properties C∞
0 (G) ⊂ H1,s

0 (G) and H1,s
0 (G) = C∞

0 (G)
‖∇.‖s . For u ∈ H1,q

0 (G),

φ ∈ H1,q′
0 (G)

〈∇u,∇φ〉 =
n∑

i,k=1

∫
G

∂iuk∂iφkdx

and for f ∈ Lq(G), g ∈ Lq′
(G) we set

〈 f, g〉 :=
∫
G

fgdx.

Let Lq
0(G) := {

p ∈ Lq(G) : ∫
G

pdx = 0
}
. The procedure in the subsequent papers is as

follows: For p ∈ Lq
0(G) there exists a unique v ∈ H1,q

0 (G) such that (see [21])

〈∇v,∇φ〉 = 〈p, div φ〉 ∀φ ∈ H1,q′
0 (G). (0.10)

Let Zq : Lq
0(G) → Lq

0(G) be defined by

Zq(p) := div v (0.11)

where v is the solution of (0.10). Then (0.9) is equivalent to λZq(p) = p. Therefore it
suffices to investigate the operator Zq. The authors make essential use of a direct decom-
position (q = 2: orthogonal decomposition) being equivalent to weak Lq-solvability of
the Dirichlet problem for the Bilaplacian �2:

Lq(G) = Aq(G) ⊕ Bq(G), where

Aq(G) :=
{
�s : s ∈ H2,q

0 (G)
}

Bq(G) :=
{

p ∈ Lq(G) : 〈p,�s〉 = 0 ∀s ∈ H2,q′
0 (G)

} (0.12)

and there is a constant Kq > 0 such that

‖�s‖q + ‖p‖q ≤ Kq‖�s + p‖q ∀s ∈ H2,q
0 (G),∀p ∈ Bq(G).

Here H2,q
0 (G) := C∞

0 (G)
‖·‖2,q equipped with norm ‖u‖2,q := (∑n

i,k=1 ‖∂i∂ku‖q
q
) 1

q .

An equivalent norm on H2,q
0 (G) is given by ‖�.‖q . This decomposition holds true for

bounded domains G with boundary ∂G ∈ C2. If G ⊂ Rn is an unbounded domain with
∂G ∈ C2 (e.g. a half-space or an exterior domain), the spaces H2,q(G) have to be replaced
by slightly bigger spaces Ĥ2,q

0 (G) resp. Ĥ2,q• (G) ((0.12) was shown in [20] for bounded

domains and in [19] for exterior domains too). For s ∈ H2,q
0 (G) it follows immediately

�s ∈ Lq
0(G), whence

Lq
0(G) = Aq(G) ⊕ Bq

0(G) :=

p ∈ Bq(G) :

∫
G

pdx = 0


 . (0.13)
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4 Simader -- von Wahl

For p = �s ∈ Aq(G) it is readily seen that v = ∇s ∈ H1,q
0 (G) is the solution of (0.10)

and div v = �s = p, whence Zq(p) = p ∀p ∈ Aq(G), and λ = 1 is an eigenvalue of
infinite multiplicity. For a complete characterization of the Cosserat spectrum by (0.12)
it suffices to study Zq |Bq

0(G).

For the case of the half-space H := {x ∈ Rn : xn > 0} this was performed in [22].
Then it turned out that

Zq(p) = 2p ∀p ∈ Bq(H ).

Therefore in H for all n ≥ 2 and all 1 < q < ∞ the only Cosserat eigenvalues are λ1 = 1
and λ2 = 2, each of infinite multiplicity. In that paper the decomposition (0.12) is used
and the solution v of (0.10) is constructed with the classical method of images. Then, for
p ∈ Bq(H ) the value of Zq(p) was calculated by use of the explicitly known reproducing
kernel for harmonic Lq-functions in the half-space. Only results for scalar equations had
been used but no results on elliptic systems. In addition for n = 3 an eigenvalue problem
similar to (0.8) is studied (replace ∇ div v by rot rot v on the right hand side of (0.8)).
The results of [22] had been sufficient to build up a complete theory for equation (0.10)
in bounded and exterior domains G ⊂ Rn and all 1 < q < ∞ (cf. M. Stark [24]). But
until now it was not possible to extend the spectral results from [22] even to the case of a
“slightly perturbed” half-space

Hw := {
x = (x′, xn) : xn > w(x′)

}
(where w ∈ C∞

0 (Rn−1), w(0) = 0, ∇′w(0) = 0 and ‖∇′w‖∞,Rn−1 “small”).

In the case of a bounded domain G ⊂ Rn (n = 2, 3) with Lipschitz boundary ∂G and
for q = 2 M. Crouzeix used an ingenious ansatz ([11, Theorem 3, p. 245/246]) for the
study of Z2 |B2

0(G) and he sketched the proofs. St. Weyers [30] succeeded to prove that
Crouzeix’s ansatz can be extended to the case of all n ≥ 2, 1 < q < ∞ and to bounded as
well as to exterior domains G ⊂ Rn with sufficiently smooth boundaries ∂G. Following
Crouzeix’s ansatz and using regularity results from [20] and [21] he was able to show the
existence of a constant Cq > 0 such that

[
Zq(p) − 1

2 p
] ∈ H1,q(G) and∥∥∥∥Zq(p) − 1

2
p

∥∥∥∥
H1,q(G)

≤ Cq‖p‖Lq(G) ∀p ∈ Bq
(0)(G) (0.14)

(where Bq
(0)(G) = Bq

0(G) if G is bounded and Bq
(0)(G) := Bq(G) if G is an exterior

domain). Here H1,q(G) := { f ∈ Lq(G) : ∃∂i f ∈ Lq(G) (weakly)} is equipped with the
full norm

‖ f ‖H1,q (G) :=
(

‖ f ‖q
Lq(G) +

n∑
i=1

‖∂i f ‖q
Lq(G)

) 1
q

and denotes in any case the “usual” Sobolev space. If G is bounded, the compact-
ness of the embedding H1,q(G) ↪→ Lq(G) implies the compactness of the operator(
Zq − 1

2 I
) |Bq

0(G): Bq
0(G) → Bq

0(G). In the case of an exterior domain G the em-

bedding H1,q(G) ↪→ Lq(G) is continuous, but no longer compact. To overcome this
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The Cosserat problem 5

difficulty Weyers proved decay estimates [30, Theorems 8.7, 8.8] for Lq-functions
(1 ≤ q < ∞) being harmonic in the complement of a ball. Then the embedding
H1,q(G) ∩ Bq(G) ↪→ Bq(G) turns out to be compact also for exterior domains. This
result readily implies compactness of the operator

(
Zq − 1

2 I
) |Bq(G): Bq(G) → Bq(G)

for exterior domains G ⊂ Rn . Decay estimates also form the basis for the proof that all
Cosserat eigenfunctions to Cosserat eigenvalues λ /∈ {1, 2} (each of finite multiplicity)
have gradients integrable to any power 1 < r < ∞ [30, Theorem 8.12]. Therefore the
spectrum of Zq , without the values 1 and 2, does not depend on 1 < q < ∞.

Another very interesting fact concerning a relation between Green’s function and
the reproducing kernel for the Laplacian in bounded domains G ⊂ Rn is proved in
[30, Theorem 1.5]. It is still an open question if that result could be proved directly by
careful consideration of Green’s function for the Laplacian and the reproducing kernel
for harmonic functions. The result of [30, Theorem 1.5] is formally quite analogous
to a recent result found by M. Englis, D. Lukkassen, J. Peetre and L.-E. Persson [12,
Theorem 4.3, p. 113].

The results of [30] allow a lot of applications. Some of them are summarized in [23].
If G ⊂ Rn is bounded for p ∈ Lq

0(G), let the unique solution v ∈ H1,q
0 (G) of (0.10)

be denoted by Tq(p) and let Mq(G) := Tq
(
Lq

0(G)
)
. Then div : Mq(G) → Lq

0(G) is a
bijective continuous map with continuous inverse ([23, Theorems 3.1–3.5]). Let

D1,q
0 (G) := {

u ∈ H1,q
0 (G) : div u = 0

}
.

Then the direct decomposition

H1,q
0 (G) = D1,q

0 (G) ⊕ Mq(G), 1 < q < ∞
readily follows [23, Theorem 3.6]. Analogous results hold for exterior domains if

H1,q
0 (G) is replaced by the “larger” space Ĥ

1,q
• (G). Nearly trivial consequences then

are the solvability of Stokes’ equation (Theorem 4.4) and of the Lamé–Navier equation
(Theorem 4.3). In section 6 the authors study the problem whether for the Cosserat eigen-
value λ = 1 there exist eigensolutions such that � div v = 0. If G is either a bounded or
an exterior domain with smooth boundary ∂G, then Rn \ Ḡ has at most N ∈ N connected
components (Lemma 5.1). If and only if N ≥ 2 there is a (N − 1)-dimensional space
of eigensolutions v to the eigenvalue λ = 1 such that � div v = 0 (Theorem 6.1). This
space is spanned by gradients of (N − 1) solutions of certain Dirichlet problems for the
Bilaplacian �2 (Theorem 5.7).
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à des forces données. C. R. Acad. Sci. (Paris), 133: 271–273, 1901.
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