We characterize lines of reversibility for the centre-problem by using their slope as parameter. As a result of our method we formulate in a rather concise way the conditions for reversibility for cubic systems with nonvanishing quadratic terms.

1 Introduction

Consider a system of differential equations of the form

\[
\begin{align*}
\dot{x} &= y + q(x, y) \\
\dot{y} &= -x - p(x, y)
\end{align*}
\]

where \(p, q\) are polynomials whose terms of lowest order are of degree at least two. A well-known sufficient condition, due to Poincaré, for the origin to be a centre is that the system be reversible with respect to a line \(L\), which passes through the origin, i.e. that the system be invariant under a reflection in the line \(L\), and under a simultaneous reversal of the independent variable \(t\). Thus system (1.1) is reversible with respect to the line \(x = 0\) if and only if it is invariant under the transformation \((x, y, t) \rightarrow (-x, y, -t)\), i.e. if and only if \(q(-x, y) = q(x, y)\) and \(p(-x, y) = -p(x, y)\). Thus \(q\) contains only even powers of \(x\) and \(p\) only odd ones. Reversibility with respect to \(y = 0\) is thus equivalent to \(q(x, -y) = -q(x, y), p(x, -y) = p(x, y)\), i.e. \(q\) contains only odd powers of \(y\) and \(p\) only even ones. As for a general line \(L\) one can apply a rotation which transforms \(L\) into the line \(x = 0\) or \(y = 0\) and a criterion for reversibility may then readily be attained [1]. Collins, by using tensor-calculus, derives in [2] a necessary and sufficient condition for the existence of such a line without involving its unknown equation.

Here we discuss another method which neither uses purely orthogonal transformations nor tensor calculus. By a suitable change of variables we reduce the problem of finding a line of reversibility \(y = \frac{1}{m}x\) with \(m \in \mathbb{R} - \{0\}\) to the question whether the system is reversible to \(y = 0\). This access therefore leaves out the coordinate-axes as possible lines of reversibility. As mentioned above it is however easy to decide if one of the coordinate axes is a line of reversibility. If we write

\[
\begin{align*}
p &= p_2 + p_3 + \ldots + p_N \\
q &= q_2 + q_3 + \ldots + q_N
\end{align*}
\]

with homogeneous polynomials \(p_i, q_i\) of degree \(i\) it turns out that possible lines of reversibility are already determined by the quadratic case \(\dot{x} = y + q_2, \dot{y} = -x - p_2\) provided \((p_2, q_2) \neq (0, 0)\). The values of \(m\) found there have to be inserted into polynomial equations corresponding to \(p_2, q_2, \ldots, p_N, q_N\). These equations then provide the necessary and sufficient conditions for (1.1) to have a line of reversibility. The coefficients of the polynomial equations linearly depend on the coefficients of \(p_3, q_3, \ldots, p_N, q_N\) respectively. We use this method to discuss the case

\[
\begin{align*}
p &= p_2 + p_3 \\
q &= q_2 + q_3
\end{align*}
\]

for \((p_2, q_2) \neq (0, 0)\)

and to bring the conditions for the existence of a line of reversibility into a manageable form.
2 Reversibility in Polynomial Systems

In what follows we frequently use instead of (1.1) the single equation
\[
y' = -\frac{x + p(x, y)}{y + q(x, y)}
\]
(2.1)
as done in [3] or [4]. For \(m \neq 0 \) we employ the linear transformation of variables.
\[
\begin{align*}
\xi &= y - mx, \\
\eta &= y + \frac{1}{m}x
\end{align*}
\]
(2.2)
or
\[
\begin{align*}
x &= \frac{m}{m^2 + 1} (\eta - \xi) = \varphi(\xi, \eta), \\
y &= \frac{m^2}{m^2 + 1} \eta + \frac{1}{m^2 + 1} \xi = \psi(\xi, \eta).
\end{align*}
\]
(2.3)
We set \(\Phi(\xi, \eta) = (\varphi(\xi, \eta), \psi(\xi, \eta))^T \) with \(T \) for transposition. \(\Phi^{-1} \) consists of a rotation and a stretching of the \(x, y \)-coordinates. So does \(\Phi \) but in opposite order. Thus reversibility with respect to a line is a property which is invariant under \(\Phi^{-1} \) and \(\Phi \). Then (2.1) becomes
\[
\eta' = -\frac{\xi + (q - mp) \circ \Phi}{m^2 \eta + m(mp + p) \circ \Phi}.
\]
(2.4)
Now we arrive at

Theorem 2.1: (2.1) has a centre at \((0, 0)\) with line of reversibility \(y = -\frac{1}{m}x(m \neq 0) \) if and only if each
\[
\begin{align*}
(q_i - mp_i) \circ \Phi \text{ contains only even powers of } \eta \text{ and each} \\
(mq_i + p_i) \circ \Phi \text{ contains only odd powers of } \eta, \quad 2 \leq i \leq N.
\end{align*}
\]
(2.5)

Proof:
If (2.4) satisfies (2.5), then (2.4) has a centre at \((0, 0)\) with line of reversibility \(\eta = 0 \). Thus (2.1) has a centre at \((0, 0)\) with line of reversibility \(y = -\frac{1}{m}x \). If conversely (2.1) has a centre at \((0, 0)\) with line of reversibility \(y = -\frac{1}{m}x \), then (2.4) has so with line of reversibility \(\eta = 0 \). Consequently (2.5) is satisfied. \(\square \)

(2.5) can be transformed into a more explicit form.

Theorem 2.2: (2.5) is equivalent to \(N - 1 \) matrix equations
\[
\begin{align*}
\mathcal{L}_{i+1}(p_i, q_i) \left(\begin{array}{c}
m \\
m^2 \\
\vdots \\
m^{i+1}
\end{array} \right) &= \left(\begin{array}{c}
b_1(p_i, q_i) \\
b_2(p_i, q_i) \\
\vdots \\
b_i+1(p_i, q_i)
\end{array} \right), \quad 2 \leq i \leq N,
\end{align*}
\]
(2.6)
where \(\mathcal{L}_{i+1}(p_i, q_i) \), \((b_1(p_i, q_i), \ldots, b_{m+1}(p_i, q_i))^T\) are \((i+1) \times (i+1), \) \((i+1) \times 1\) matrices respectively whose coefficients linearly depend on the coefficients of \(p_i, q_i \).

Proof:
We have to evaluate \((q_i - mp_i) \circ \Phi, (mq_i + p_i) \circ \Phi\). These expressions are of the form
\[
\frac{1}{(m^2 + 1)^i} \sum_{k,l,k+l=i} (q_{ikl} - mp_{ikl}) \sum_{j=0}^{k} \binom{k}{j} m^j \eta^{k-j} (-\xi)^j \cdot \sum_{q=0}^{l} \binom{l}{q} m^{2(l-q)} \eta^{l-q} \xi^q =
\]
\[
= \frac{m^i}{(m^2 + 1)^i} \sum_{\lambda=0}^{i} \eta^{i-\lambda} \sum_{k,l,k+l=i} (q_{ikl} - mp_{ikl}) m^l \cdot \sum_{j,q,j+q=\lambda \atop j \leq \min(k,l)} \sum_{q=\min(j,l)}^{\lambda} m^{-2q} (-\xi)^j \xi^q \binom{k}{j} \binom{l}{q}
\]
if we set \(\lambda = j + q \) and if \(p_{ikl}, q_{ikl} \) denote the coefficients of \(p_i, q_i \) respectively. If \(i - \lambda \) is odd, the coefficient of \(\eta^{i-\lambda} \) has to vanish. If \(i \) is odd the values
furnish the powers in question. For \(\lambda = 0 \) the largest occurring power of \(m \) is \(2i + 1 \), the smallest one \(i \). For \(\lambda = 2 \) we obtain \(2i - 1 \) as largest one and \(i - 2 \) as smallest one and so on. Dividing by \(m, m^{-2}, \ldots \) and multiplying by \((m^2 + 1)^i\) we end up with \((i + 1)/2\) polynomials in \(m \) of degree \(i + 1 \) which have to vanish. If \(i \) is even the values
\[
\lambda = i - 1, i - 3, \ldots, 0
\]
furnish the powers in question. For \(\lambda = 1 \) the largest occurring power of \(m \) is \(2i \), the smallest one is \(i - 1 \). Observe that these values are assumed for \(l = i - 1, q = 0 \) and \(l = 1, q = 1 \). For \(\lambda = 3 \) we obtain \(2i - 2 \) as largest one and \(i - 3 \) as smallest one and so on. Dividing by \(m^{i-1}, m^{i-3}, \ldots \) and multiplying by \((m^2 + 1)^i\) we arrive at \(i/2 \) polynomials in \(m \) of degree \(i + 1 \) which have to vanish. As for \((mq_i + p_i) \circ \Phi \), the coefficients of even powers of \(\eta \) have to vanish. The calculations are very similar to the preceding ones. If \(i \) is odd we again obtain \((i + 1)/2\) polynomials in \(m \) of degree \(i + 1 \) which have to vanish; if \(i \) is even we arrive at \(i/2 + 1 \) polynomials in \(m \) which have to vanish. \(\square \)

The systems (2.6) have to be considered as necessary and sufficient conditions on the coefficients of \(p_i, q_i \) for the existence of a line of reversibility different from the coordinate-axes. This can be seen as follows. If \((p_j, q_j)\) is the first pair where \(p_j, q_j \) do not vanish identically we can find the possible values of \(m \) from (2.6) for \(i = j \) in terms of the coefficients of \(p_j, q_j \). These then have to be inserted into (2.6) for \(i = j, \ldots, N \). For instance let us assume that in
\[
\mathcal{L}_{j+1}(p_j, q_j) = (l_{ik})_{i=1, \ldots, j+1}
\]
the matrix
\[
(l_{ik})_{i=2, \ldots, j+1} \text{ has rank } j
\]
then we can possibly obtain the value of \(m \) from the first row of (2.6, \(i = j \)). At least this is so if \(\mathcal{L}_{j+1}(p_j, q_j) \) has rank \(j + 1 \). This value of \(m \) if \(\neq 0 \) then has to be inserted into the remaining equations in (2.6). It is an expression in the coefficients of \(p_j, q_j \), Thus we obtain the necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate-axes. In the example to follow in the next section we will see that in more detail.

3 Cubic Systems with Nonvanishing Quadratic Parts

Let us consider
\[
y' = -\frac{x + p_2 + p_3}{y + q_2 + q_3}
\]
with
\[
\begin{align*}
p_2 &= \tilde{a}x^2 + (2\tilde{b} + \alpha)xy + \tilde{c}y^2, \\
q_2 &= \tilde{b}x^2 + (2\tilde{c} + \beta)xy + \tilde{d}y^2, \\
p_3 &= ax^3 + bx^2y + cxy^2 + dy^3, \\
q_3 &= Ax^3 + Bx^2y + Cxy^2 + Dy^3.
\end{align*}
\]
Here we adopted the usual notation for the quadratic parts \(p_2, q_2 \) (cf. [3, 4, 5]). The conditions (2.6, \(i = 2, 3 \)) read as follows.
\[
m^3(2\tilde{b} + \alpha) + m^2(-4\tilde{c} + \beta + 2\tilde{a}) + m(-4\tilde{b} + \alpha + 2\tilde{d}) = -(2\tilde{c} + \beta),
\]
\[
m^3\tilde{b} + m^2(-2\tilde{c} + \beta + \tilde{a}) + m(-2\tilde{b} + \alpha + \tilde{d}) = -\tilde{c},
\]
\[
m^3\tilde{d} + m^2((2\tilde{c} + \beta) + \tilde{c}) + m((2\tilde{b} + \alpha) + \tilde{b}) = -\tilde{a},
\]
\[
-m^4d + m^3(D - c) + m^2(C - b) + m(B - a) = -A
\]
\[-m^4 b + m^3 (B - (3a - 2c)) + m^2 (3A - 2C - (3d - 2b)) + m(3D - 2B - c) = -C, \]
\[-m^4 C + m^3 (3D - 2B - c) + m^2 (2C - 3A - (2b - 3d)) + m(B - (3a - 2c)) = -b, \]
\[-m^4 A + m^3 (B - a) + m^2 (-C + b) + m(D - c) = -d. \]
(3.5, 3.6, 3.7) stem from \(i = 2, (3.4, 3.5, 3.6, 3.7) \) from \(i = 3. \) We start with \(i = 2. \) Then (3.1, 3.2, 3.3) are equivalent to

\[
m^3 \alpha + m^2 \beta + m \alpha + \beta = 0
\]
\[
m^2 (\hat{b} + \hat{d}) + m^2 (\hat{a} + \hat{c}) + m(\hat{b} + \hat{d}) + \hat{a} + \hat{c} = 0
\]
\[
m^3 \hat{d} + m^2 ((2\hat{c} + \beta) + \hat{c}) + m((2\hat{b} + \alpha) + \hat{\beta}) + \hat{a} = 0
\]
(3.8, 3.9, 3.10)

For further treatment we introduce the vector

\[
a = (\hat{a} + \hat{c}, \hat{b} + \hat{d}, \alpha, \beta) \in \mathbb{R}^4
\]

If \(a \) has only nonvanishing components (3.8, 3.9) admit within \(R - \{0\} \) only the solutions \(-\frac{\beta}{\alpha}, -\frac{\hat{a} + \hat{c}}{\beta + \hat{d}}\) respectively. Thus we obtain as necessary and sufficient conditions for the solvability of (3.1, 3.2, 3.3) the relations

\[
\beta(\hat{b} + \hat{d}) = \alpha(\hat{a} + \hat{c}), \tag{3.11}
\]

\[
-\beta^2 \hat{d} + \alpha \beta^2 (3\hat{c} + \beta) - \alpha^2 \beta (3\hat{b} + \alpha) + \alpha^2 \hat{a} = 0. \tag{3.12}
\]

(3.11, 3.12) coincide with condition II in [5, p. 13].

Inserting \(m = -\frac{\hat{d}}{\hat{d}}\) into (3.4, ..., 3.7) we obtain together with (3.11, 3.12) the necessary and sufficient conditions for the existence of a line of reversibility, different from the coordinate-axes.

We briefly discuss the other possibilities for \(a \). If \(a \neq 0 \) there are only two cases where we may have a line of reversibility different from the coordinate-axes, namely

\[
\hat{a} + \hat{c} \neq 0, \quad \hat{b} + \hat{d} \neq 0, \quad \alpha = 0, \quad \beta = 0,
\]
\[
\hat{a} + \hat{c} = 0, \quad \hat{b} + \hat{d} = 0, \quad \alpha \neq 0, \quad \beta \neq 0;
\]
then \(m = -\frac{\hat{a} + \hat{c}}{\hat{b} + \hat{d}}\) in the first case and then necessary and sufficient conditions for the existence of a line of reversibility as above are

\[
-(\hat{a} + \hat{c})^2 \hat{d} + 3(\hat{b} + \hat{d})(\hat{a} + \hat{c})^2 \hat{c} - 3(\hat{b} + \hat{d})^2 (\hat{a} + \hat{c})\hat{b} + (\hat{b} + \hat{d})^3 \hat{a} = 0,
\]

\[(3.4, \ldots, 3.7) \text{ with } m = -\frac{\hat{a} + \hat{c}}{\hat{b} + \hat{d}}. \]

In the second case we have \(m = -\frac{\beta}{\alpha} \) and an analogous result. It remains to deal with \(a = 0 \). In this case we are left with

\[
m^3 \hat{d} + 3m^2 \hat{c} - 3m\hat{d} - \hat{c} = 0.
\]

If \(\hat{d} \neq 0 \) we obtain three distinct real solutions \(m_1, m_2, m_3 \) since the discriminant is \(< 0 \). If \(\hat{c} \neq 0 \) these solutions do not vanish and \(y = -\frac{1}{m} x \) is a line of reversibility if and only if \((3.4, \ldots, 3.7) \) are satisfied with \(m = m_1 \). Since \(m_1, m_2, m_3 \) can be computed by means of Cardano’s formula we arrive thus at the necessary and sufficient conditions for the existence of a line of reversibility different from the coordinate axes. If \(\hat{d} \neq 0, \hat{c} = 0 \) one of \(m_i \) vanishes, say \(m_3 \). For \(m_1 = \sqrt{3}, m_2 = -\sqrt{3} \) the conclusion before holds. The case \(\hat{d} = 0, \hat{c} \neq 0 \) furnishes two roots, namely \(m_1 = \frac{1}{\sqrt{3}}, m_2 = -\frac{1}{\sqrt{3}} \) and we can proceed as before. The case \(\hat{d} = \hat{c} = 0 \) implies \((p_2, q_2) = (0, 0) \) since \(a = 0 \). It therefore contradicts our assumption.
References

